
1

Floating Point

 Representation for non-integral numbers

 Including very small and very large numbers

 Like scientific notation

 –2.34 × 1056

 +0.002 × 10–4

 +987.02 × 109

 In binary

 ±1.xxxxxxx2 × 2yyyy

 Types float and double in C

normalized

not normalized

§
3
.5

 F
lo

a
tin

g
 P

o
in

t

2

Floating Point Standard

 Defined by IEEE Std 754-1985

 Developed in response to divergence of

representations

 Portability issues for scientific code

 Now almost universally adopted

 Two representations

 Single precision (32-bit)

 Double precision (64-bit)

3

IEEE Floating-Point Format

 S: sign bit (0 non-negative, 1 negative)

 Normalize significand: 1.0 ≤ |significand| < 2.0
 Always has a leading pre-binary-point 1 bit, so no need to

represent it explicitly (hidden bit)

 Significand is Fraction with the “1.” restored

 Exponent: excess representation: actual exponent + Bias
 Ensures exponent is unsigned

 Single: Bias = 127; Double: Bias = 1203

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS
2Fraction)(11)(x

4

Single-Precision Range

 Exponents 00000000 and 11111111 reserved

 Smallest value

 Exponent: 00000001

 actual exponent = 1 – 127 = –126

 Fraction: 000…00 significand = 1.0

 ±1.0 × 2–126 ≈ ±1.2 × 10–38

 Largest value

 exponent: 11111110

 actual exponent = 254 – 127 = +127

 Fraction: 111…11 significand ≈ 2.0

 ±2.0 × 2+127 ≈ ±3.4 × 10+38

5

Double-Precision Range

 Exponents 0000…00 and 1111…11 reserved

 Smallest value

 Exponent: 00000000001

 actual exponent = 1 – 1023 = –1022

 Fraction: 000…00 significand = 1.0

 ±1.0 × 2–1022 ≈ ±2.2 × 10–308

 Largest value

 Exponent: 11111111110

 actual exponent = 2046 – 1023 = +1023

 Fraction: 111…11 significand ≈ 2.0

 ±2.0 × 2+1023 ≈ ±1.8 × 10+308

6

Floating-Point Precision

 Relative precision

 all fraction bits are significant

 Single: approx 2–23

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal

digits of precision

 Double: approx 2–52

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal

digits of precision

7

Floating-Point Example

 Represent –0.75

 –0.75 = (–1)1 × 1.12 × 2–1

 S = 1

 Fraction = 1000…002

 Exponent = –1 + Bias

 Single: –1 + 127 = 126 = 011111102

 Double: –1 + 1023 = 1022 = 011111111102

 Single: 1011111101000…00

 Double: 1011111111101000…00

8

Floating-Point Example

 What number is represented by the single-
precision float

 11000000101000…00

 S = 1

 Fraction = 01000…002

 Fxponent = 100000012 = 129

 x = (–1)1 × (1 + 012) × 2(129 – 127)

 = (–1) × 1.25 × 22

 = –5.0

9

Denormal Numbers

 Exponent = 000...0 hidden bit is 0

 Smaller than normal numbers

 allow for gradual underflow, with

diminishing precision

 Denormal with fraction = 000...0

Two representations

of 0.0!

BiasS
2Fraction)(01)(x

0.0
BiasS

20)(01)(x

Chapter 3 — Arithmetic for Computers — 10

Infinities and NaNs

 Exponent = 111...1, Fraction = 000...0

 ±Infinity

 Can be used in subsequent calculations,

avoiding need for overflow check

 Exponent = 111...1, Fraction ≠ 000...0

 Not-a-Number (NaN)

 Indicates illegal or undefined result

 e.g., 0.0 / 0.0

 Can be used in subsequent calculations

11

Floating-Point Addition

 Consider a 4-digit decimal example
 9.999 × 101 + 1.610 × 10–1

 1. Align decimal points
 Shift number with smaller exponent

 9.999 × 101 + 0.016 × 101

 2. Add significands
 9.999 × 101 + 0.016 × 101 = 10.015 × 101

 3. Normalize result & check for over/underflow
 1.0015 × 102

 4. Round and renormalize if necessary
 1.002 × 102

12

Floating-Point Addition

 Now consider a 4-digit binary example
 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)

 1. Align binary points
 Shift number with smaller exponent

 1.0002 × 2–1 + –0.1112 × 2–1

 2. Add significands
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

 3. Normalize result & check for over/underflow
 1.0002 × 2–4, with no over/underflow

 4. Round and renormalize if necessary
 1.0002 × 2–4 (no change) = 0.0625

13

Floating-Point Multiplication

 Consider a 4-digit decimal example
 1.110 × 1010 × 9.200 × 10–5

 1. Add exponents
 For biased exponents, subtract bias from sum

 New exponent = 10 + –5 = 5

 2. Multiply significands
 1.110 × 9.200 = 10.212 10.212 × 105

 3. Normalize result & check for over/underflow
 1.0212 × 106

 4. Round and renormalize if necessary
 1.021 × 106

 5. Determine sign of result from signs of operands
 +1.021 × 106

14

Floating-Point Multiplication

 Now consider a 4-digit binary example
 1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375)

 1. Add exponents
 Unbiased: –1 + –2 = –3

 Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127

 2. Multiply significands
 1.0002 × 1.1102 = 1.1102 1.1102 × 2–3

 3. Normalize result & check for over/underflow
 1.1102 × 2–3 (no change) with no over/underflow

 4. Round and renormalize if necessary
 1.1102 × 2–3 (no change)

 5. Determine sign: +ve × –ve –ve
 –1.1102 × 2–3 = –0.21875

15

Accurate Arithmetic

 IEEE Std 754 specifies additional rounding
control
 Extra bits of precision (guard, round, sticky)

 Choice of rounding modes

 Allows programmer to fine-tune numerical behavior of
a computation

 Not all FP units implement all options
 Most programming languages and FP libraries just

use defaults

 Trade-off between hardware complexity,
performance, and market requirements

16

Associativity

 Parallel programs may interleave

operations in unexpected orders

 Assumptions of associativity may fail

(x+y)+z x+(y+z)

x -1.50E+38 -1.50E+38

y 1.50E+38

z 1.0 1.0

1.00E+00 0.00E+00

0.00E+00

1.50E+38

 Need to validate parallel programs under

varying degrees of parallelism

17

Who Cares About FP Accuracy?

 Important for scientific code

 But for everyday consumer use?

 “My bank balance is out by 0.0002¢!”

 The Intel Pentium FDIV bug

 The market expects accuracy

 See Colwell, The Pentium Chronicles

