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Floating Point 

 Representation for non-integral numbers 

 Including very small and very large numbers 

 Like scientific notation 

 –2.34 × 1056 

 +0.002 × 10–4 

 +987.02 × 109 

 In binary 

 ±1.xxxxxxx2 × 2yyyy 

 Types float and double in C 

normalized 

not normalized 
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Floating Point Standard 

 Defined by IEEE Std 754-1985 

 Developed in response to divergence of 

representations 

 Portability issues for scientific code 

 Now almost universally adopted 

 Two representations 

 Single precision (32-bit) 

 Double precision (64-bit)  
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IEEE Floating-Point Format 

 S: sign bit (0  non-negative, 1  negative) 

 Normalize significand: 1.0 ≤ |significand| < 2.0 
 Always has a leading pre-binary-point 1 bit, so no need to 

represent it explicitly (hidden bit) 

 Significand is Fraction with the “1.” restored 

 Exponent: excess representation: actual exponent + Bias 
 Ensures exponent is unsigned 

 Single: Bias = 127; Double: Bias = 1203 

S Exponent Fraction 

single: 8 bits 
double: 11 bits 

single: 23 bits 
double: 52 bits 

Bias)(ExponentS
2Fraction)(11)(x
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Single-Precision Range 

 Exponents 00000000 and 11111111 reserved 

 Smallest value 

 Exponent: 00000001 

 actual exponent = 1 – 127 = –126 

 Fraction: 000…00  significand = 1.0 

 ±1.0 × 2–126 ≈ ±1.2 × 10–38 

 Largest value 

 exponent: 11111110 

 actual exponent = 254 – 127 = +127 

 Fraction: 111…11  significand ≈ 2.0 

 ±2.0 × 2+127 ≈ ±3.4 × 10+38 
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Double-Precision Range 

 Exponents 0000…00 and 1111…11 reserved 

 Smallest value 

 Exponent: 00000000001 

 actual exponent = 1 – 1023 = –1022 

 Fraction: 000…00  significand = 1.0 

 ±1.0 × 2–1022 ≈ ±2.2 × 10–308 

 Largest value 

 Exponent: 11111111110 

 actual exponent = 2046 – 1023 = +1023 

 Fraction: 111…11  significand ≈ 2.0 

 ±2.0 × 2+1023 ≈ ±1.8 × 10+308 
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Floating-Point Precision 

 Relative precision 

 all fraction bits are significant 

 Single: approx 2–23 

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal 

digits of precision 

 Double: approx 2–52 

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal 

digits of precision 
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Floating-Point Example 

 Represent –0.75 

 –0.75 = (–1)1 × 1.12 × 2–1 

 S = 1 

 Fraction = 1000…002 

 Exponent = –1 + Bias 

 Single: –1 + 127 = 126 = 011111102 

 Double: –1 + 1023 = 1022 = 011111111102 

 Single: 1011111101000…00 

 Double: 1011111111101000…00 
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Floating-Point Example 

 What number is represented by the single-
precision float 

 11000000101000…00 

 S = 1 

 Fraction = 01000…002 

 Fxponent = 100000012 = 129 

 x = (–1)1 × (1 + 012) × 2(129 – 127) 

 = (–1) × 1.25 × 22 

 = –5.0 



9 

Denormal Numbers 

 Exponent = 000...0  hidden bit is 0 

 Smaller than normal numbers 

 allow for gradual underflow, with 

diminishing precision 

 Denormal with fraction = 000...0 

Two representations 

of 0.0! 

BiasS
2Fraction)(01)(x




0.0
BiasS

20)(01)(x



Chapter 3 — Arithmetic for Computers — 10 

Infinities and NaNs 

 Exponent = 111...1, Fraction = 000...0 

 ±Infinity 

 Can be used in subsequent calculations, 

avoiding need for overflow check 

 Exponent = 111...1, Fraction ≠ 000...0 

 Not-a-Number (NaN) 

 Indicates illegal or undefined result 

 e.g., 0.0 / 0.0 

 Can be used in subsequent calculations 
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Floating-Point Addition 

 Consider a 4-digit decimal example 
 9.999 × 101 + 1.610 × 10–1 

 1. Align decimal points 
 Shift number with smaller exponent 

 9.999 × 101 + 0.016 × 101 

 2. Add significands 
 9.999 × 101 + 0.016 × 101 = 10.015 × 101 

 3. Normalize result & check for over/underflow 
 1.0015 × 102 

 4. Round and renormalize if necessary 
 1.002 × 102 
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Floating-Point Addition 

 Now consider a 4-digit binary example 
 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375) 

 1. Align binary points 
 Shift number with smaller exponent 

 1.0002 × 2–1 + –0.1112 × 2–1 

 2. Add significands 
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1 

 3. Normalize result & check for over/underflow 
 1.0002 × 2–4, with no over/underflow 

 4. Round and renormalize if necessary 
 1.0002 × 2–4 (no change)  = 0.0625 
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Floating-Point Multiplication 

 Consider a 4-digit decimal example 
 1.110 × 1010 × 9.200 × 10–5 

 1. Add exponents 
 For biased exponents, subtract bias from sum 

 New exponent = 10 + –5 = 5 

 2. Multiply significands 
 1.110 × 9.200 = 10.212    10.212 × 105 

 3. Normalize result & check for over/underflow 
 1.0212 × 106 

 4. Round and renormalize if necessary 
 1.021 × 106 

 5. Determine sign of result from signs of operands 
 +1.021 × 106 
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Floating-Point Multiplication 

 Now consider a 4-digit binary example 
 1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375) 

 1. Add exponents 
 Unbiased: –1 + –2 = –3 

 Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127 

 2. Multiply significands 
 1.0002 × 1.1102 = 1.1102    1.1102 × 2–3 

 3. Normalize result & check for over/underflow 
 1.1102 × 2–3 (no change) with no over/underflow 

 4. Round and renormalize if necessary 
 1.1102 × 2–3 (no change) 

 5. Determine sign: +ve × –ve  –ve 
 –1.1102 × 2–3  = –0.21875 
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Accurate Arithmetic 

 IEEE Std 754 specifies additional rounding 
control 
 Extra bits of precision (guard, round, sticky) 

 Choice of rounding modes 

 Allows programmer to fine-tune numerical behavior of 
a computation 

 Not all FP units implement all options 
 Most programming languages and FP libraries just 

use defaults 

 Trade-off between hardware complexity, 
performance, and market requirements 
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Associativity 

 Parallel programs may interleave 

operations in unexpected orders 

 Assumptions of associativity may fail 

(x+y)+z x+(y+z)

x -1.50E+38 -1.50E+38

y 1.50E+38

z 1.0 1.0

1.00E+00 0.00E+00

0.00E+00

1.50E+38

 Need to validate parallel programs under 

varying degrees of parallelism 



17 

Who Cares About FP Accuracy? 

 Important for scientific code 

 But for everyday consumer use? 

 “My bank balance is out by 0.0002¢!”  

 

 The Intel Pentium FDIV bug 

 The market expects accuracy 

 See Colwell, The Pentium Chronicles 


