Variants: КНАД232
- Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 7*x^3 + 9*x^2 - 9*x + 2 f2(x) = sin(-8*x)*(-3) + 7 f3(x) = 3^x - 3 f4(x) = 1 / (1 + e^(9*x))
- Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 2*x^3 + 5*x^2 - 5*x - 9 f2(x) = sin(6*x)*8 + 9 f3(x) = 2^x - 1 f4(x) = 1 / (1 + e^(-6*x))
- Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = -3*x^3 + 7*x^2 + 6*x + 2 f2(x) = sin(-3*x)*(-1) + 2 f3(x) = 3^x + 2 f4(x) = 1 / (1 + e^(8*x))
- Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = -2*x^3 - 1*x^2 + 2*x - 4 f2(x) = sin(-9*x)*(-3) - 1 f3(x) = 6^x + 3 f4(x) = 1 / (1 + e^(-1*x))
- Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = -9*x^3 - 7*x^2 + 3*x - 2 f2(x) = sin(6*x)*(-7) + 8 f3(x) = (-3)^x - 9 f4(x) = 1 / (1 + e^(5*x))
- Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = -1*x^3 - 1*x^2 - 1*x + 1 f2(x) = sin(5*x)*9 - 5 f3(x) = 4^x - 4 f4(x) = 1 / (1 + e^(-5*x))
- Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 5*x^3 - 5*x^2 - 3*x + 2 f2(x) = sin(-9*x)*(-5) - 4 f3(x) = (-8)^x + 9 f4(x) = 1 / (1 + e^(-4*x))
- Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 2*x^3 + 4*x^2 + 3*x - 6 f2(x) = sin(6*x)*6 - 1 f3(x) = (-8)^x + 4 f4(x) = 1 / (1 + e^(9*x))
- Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 1*x^3 + 2*x^2 + 9*x + 5 f2(x) = sin(9*x)*(-5) - 5 f3(x) = 4^x - 7 f4(x) = 1 / (1 + e^(-9*x))
- Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 7*x^3 + 9*x^2 - 1*x - 4 f2(x) = sin(7*x)*(-8) + 1 f3(x) = (-8)^x - 9 f4(x) = 1 / (1 + e^(-2*x))
- Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = -7*x^3 - 8*x^2 - 4*x + 3 f2(x) = sin(-7*x)*(-1) + 8 f3(x) = 8^x - 3 f4(x) = 1 / (1 + e^(9*x))
- Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = -6*x^3 + 1*x^2 + 2*x + 2 f2(x) = sin(-4*x)*2 + 2 f3(x) = 8^x - 1 f4(x) = 1 / (1 + e^(5*x))
- Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 5*x^3 + 9*x^2 - 8*x + 7 f2(x) = sin(-6*x)*4 + 7 f3(x) = (-7)^x + 3 f4(x) = 1 / (1 + e^(4*x))
- Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = -9*x^3 + 8*x^2 + 7*x + 8 f2(x) = sin(6*x)*(-2) + 8 f3(x) = 6^x + 8 f4(x) = 1 / (1 + e^(3*x))
- Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 1*x^3 + 2*x^2 + 1*x + 5 f2(x) = sin(4*x)*(-9) - 7 f3(x) = (-5)^x + 5 f4(x) = 1 / (1 + e^(6*x))
- Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 1*x^3 + 7*x^2 + 4*x - 7 f2(x) = sin(6*x)*(-6) + 2 f3(x) = (-3)^x - 3 f4(x) = 1 / (1 + e^(-8*x))
- Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 3*x^3 - 2*x^2 - 2*x - 4 f2(x) = sin(6*x)*(-8) - 9 f3(x) = 3^x + 7 f4(x) = 1 / (1 + e^(5*x))
- Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 1*x^3 - 4*x^2 + 6*x - 6 f2(x) = sin(7*x)*4 + 3 f3(x) = 3^x + 9 f4(x) = 1 / (1 + e^(2*x))
- Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 4*x^3 + 3*x^2 + 7*x + 8 f2(x) = sin(-5*x)*(-4) + 6 f3(x) = 5^x - 4 f4(x) = 1 / (1 + e^(1*x))
- Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 4*x^3 + 5*x^2 + 7*x - 4 f2(x) = sin(-3*x)*(-2) + 2 f3(x) = (-3)^x - 2 f4(x) = 1 / (1 + e^(-5*x))
- Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 6*x^3 + 3*x^2 + 8*x - 7 f2(x) = sin(9*x)*5 + 7 f3(x) = (-7)^x - 7 f4(x) = 1 / (1 + e^(-9*x))
- Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 3*x^3 + 5*x^2 + 8*x + 7 f2(x) = sin(4*x)*(-1) + 2 f3(x) = (-4)^x + 6 f4(x) = 1 / (1 + e^(-9*x))
- Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = -1*x^3 + 7*x^2 + 2*x + 7 f2(x) = sin(2*x)*5 + 2 f3(x) = 6^x + 3 f4(x) = 1 / (1 + e^(9*x))
- Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = -3*x^3 - 4*x^2 - 7*x - 3 f2(x) = sin(4*x)*2 - 8 f3(x) = (-3)^x - 5 f4(x) = 1 / (1 + e^(-7*x))
- Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 1*x^3 - 4*x^2 + 7*x + 1 f2(x) = sin(-5*x)*(-6) + 4 f3(x) = (-7)^x - 1 f4(x) = 1 / (1 + e^(1*x))
- Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = -3*x^3 - 4*x^2 - 2*x + 1 f2(x) = sin(7*x)*(-7) - 1 f3(x) = (-6)^x + 4 f4(x) = 1 / (1 + e^(1*x))
- Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 4*x^3 - 4*x^2 + 4*x + 1 f2(x) = sin(-2*x)*(-4) - 3 f3(x) = (-5)^x + 8 f4(x) = 1 / (1 + e^(-4*x))