Final Test: Operating Systems
The grade formula is as follows:
Grade = 0.4 * Theory + 0.6 * Programming
Part 1. Theoretical Questions
Answer the theoretical questions in a few sentences (1-2 paragraphs for a question).
Use your own words. Copy-paste from external sources and other students will result in 100% penalty.
- Operating system architecture.
- List the main components of an operating system.
- List the tasks a typical operating system solves.
- What is a system call?
- Processes and threads.
- Give definitions of process and thread.
- What is the difference between them?
- What inter-process communication mechanisms do you know?
- What synchronization mechanisms do you now?
- Permissions.
- What Linux files types to you know?
- What access rights and permission groups do you know?
- Study the output of the
ls -li
command below. -
What can you say about
file1
,file2
, andfile3
?acos@acos-vm:~/folder$ ls -li total 44 268508 -rwsr-xr-x 2 myuser acos 16832 июн 17 14:04 file1 262605 drwxr-xr-- 2 acos acos 4096 июн 17 14:08 file2 268508 -rwsr-xr-x 2 myuser acos 16832 июн 17 14:04 file3
Part 2. Programming Task
Write a program in C that does the following:
- Calculates the value of the specified function in the range
from
argv[1]
toargv[2]
with stepargv[3]
. - Writes pairs
<function argument>, <function result>)
into text fileoutput.csv
(CSV format). - The function to be calculated has the following format:
f(x) = f0(f1(x), f2(x), f3(x), f4(x))
, where:
x
is the function argument;f0
-f4
are functions that are individual according to the variant.
Requirements:
- Grade 4: make all calculations in a single process;
- Grade 8: execute the f0 function for the entire value range in a child process and return the resulting values to the parent process using IPC (a pipe or other type of IPC you like);
- Grade 10: execute f0 in the parent process and f1-f4 in separate child processes. Return the calculated values of f1-f4 to f0 using IPC (a pipe or other type of IPC you like).
Hints
- Functions
f1
-f4
have the following structure:double f1(double x) { return <math expr>; }
- Command-line arguments (strings) can be converted to
double
using the atof function. - Mathematical functions (such as
sin
,cos
,pow
,exp
etc.) and constants (M_E
) are provided in the math.h library. - Programs using library
<math.h>
must be linked with them
library: use the-lm
GCC flag. - Use the fopen, fprintf, and fclose functions to write data to the file.
- Multi-process calculations:
- Child: a function is calculated for a range of values and results are written to IPC;
- Parent: values are read from IPC in a loop and printed or used in other calculations.
Variants
Choose your variant number according to your number in the list of students.
Note: the ^
symbol means “power”.
Group 191
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 7*x^3 + 5*x^2 + 3*x + 2 f2(x) = sin(2*x)*3 + 2 f3(x) = 3^x + 5 f4(x) = 1 / (1 + e^(-2*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 6*x^3 + 9*x^2 + 3*x + 6 f2(x) = sin(9*x)*4 + 7 f3(x) = 2^x + 5 f4(x) = 1 / (1 + e^(-7*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 2*x^3 + 6*x^2 + 6*x + 9 f2(x) = sin(3*x)*7 + 3 f3(x) = 7^x + 9 f4(x) = 1 / (1 + e^(-7*x))
-
Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 6*x^3 + 2*x^2 + 9*x + 3 f2(x) = sin(2*x)*4 + 6 f3(x) = 5^x + 8 f4(x) = 1 / (1 + e^(-4*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 4*x^3 + 8*x^2 + 5*x + 2 f2(x) = sin(4*x)*5 + 6 f3(x) = 9^x + 7 f4(x) = 1 / (1 + e^(-8*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 3*x^3 + 7*x^2 + 2*x + 5 f2(x) = sin(9*x)*4 + 9 f3(x) = 4^x + 3 f4(x) = 1 / (1 + e^(-6*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 5*x^3 + 5*x^2 + 7*x + 6 f2(x) = sin(3*x)*8 + 2 f3(x) = 8^x + 5 f4(x) = 1 / (1 + e^(-8*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 7*x^3 + 8*x^2 + 5*x + 4 f2(x) = sin(5*x)*4 + 2 f3(x) = 7^x + 9 f4(x) = 1 / (1 + e^(-8*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 7*x^3 + 7*x^2 + 7*x + 3 f2(x) = sin(2*x)*6 + 8 f3(x) = 3^x + 3 f4(x) = 1 / (1 + e^(-2*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 5*x^3 + 4*x^2 + 7*x + 2 f2(x) = sin(6*x)*9 + 5 f3(x) = 4^x + 2 f4(x) = 1 / (1 + e^(-4*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 5*x^3 + 9*x^2 + 3*x + 2 f2(x) = sin(6*x)*2 + 8 f3(x) = 7^x + 3 f4(x) = 1 / (1 + e^(-4*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 5*x^3 + 8*x^2 + 2*x + 7 f2(x) = sin(4*x)*5 + 5 f3(x) = 8^x + 6 f4(x) = 1 / (1 + e^(-5*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 6*x^3 + 2*x^2 + 7*x + 6 f2(x) = sin(3*x)*3 + 2 f3(x) = 6^x + 2 f4(x) = 1 / (1 + e^(-7*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 9*x^3 + 6*x^2 + 3*x + 5 f2(x) = sin(8*x)*7 + 8 f3(x) = 5^x + 2 f4(x) = 1 / (1 + e^(-6*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 3*x^3 + 2*x^2 + 7*x + 2 f2(x) = sin(6*x)*7 + 2 f3(x) = 2^x + 9 f4(x) = 1 / (1 + e^(-3*x))
-
Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 6*x^3 + 9*x^2 + 2*x + 9 f2(x) = sin(5*x)*3 + 4 f3(x) = 9^x + 7 f4(x) = 1 / (1 + e^(-6*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 2*x^3 + 2*x^2 + 7*x + 9 f2(x) = sin(7*x)*3 + 7 f3(x) = 7^x + 3 f4(x) = 1 / (1 + e^(-5*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 5*x^3 + 2*x^2 + 7*x + 2 f2(x) = sin(5*x)*8 + 5 f3(x) = 6^x + 7 f4(x) = 1 / (1 + e^(-9*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 9*x^3 + 6*x^2 + 8*x + 3 f2(x) = sin(8*x)*5 + 7 f3(x) = 4^x + 8 f4(x) = 1 / (1 + e^(-8*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 3*x^3 + 3*x^2 + 4*x + 7 f2(x) = sin(3*x)*7 + 5 f3(x) = 6^x + 4 f4(x) = 1 / (1 + e^(-3*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 5*x^3 + 8*x^2 + 7*x + 2 f2(x) = sin(9*x)*9 + 7 f3(x) = 4^x + 5 f4(x) = 1 / (1 + e^(-9*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 9*x^3 + 9*x^2 + 2*x + 3 f2(x) = sin(7*x)*8 + 6 f3(x) = 2^x + 6 f4(x) = 1 / (1 + e^(-6*x))
-
Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 3*x^3 + 5*x^2 + 4*x + 3 f2(x) = sin(5*x)*3 + 8 f3(x) = 2^x + 4 f4(x) = 1 / (1 + e^(-4*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 4*x^3 + 6*x^2 + 3*x + 5 f2(x) = sin(9*x)*3 + 4 f3(x) = 2^x + 3 f4(x) = 1 / (1 + e^(-2*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 3*x^3 + 5*x^2 + 3*x + 5 f2(x) = sin(4*x)*5 + 5 f3(x) = 4^x + 6 f4(x) = 1 / (1 + e^(-3*x))
-
Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 3*x^3 + 9*x^2 + 2*x + 5 f2(x) = sin(4*x)*7 + 4 f3(x) = 9^x + 4 f4(x) = 1 / (1 + e^(-2*x))
Group 192
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 7*x^3 + 9*x^2 + 8*x + 2 f2(x) = sin(4*x)*5 + 3 f3(x) = 4^x + 2 f4(x) = 1 / (1 + e^(-2*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 8*x^3 + 8*x^2 + 5*x + 3 f2(x) = sin(3*x)*2 + 8 f3(x) = 6^x + 2 f4(x) = 1 / (1 + e^(-9*x))
-
Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 3*x^3 + 5*x^2 + 2*x + 5 f2(x) = sin(9*x)*4 + 8 f3(x) = 5^x + 7 f4(x) = 1 / (1 + e^(-3*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 2*x^3 + 3*x^2 + 5*x + 8 f2(x) = sin(5*x)*9 + 2 f3(x) = 5^x + 4 f4(x) = 1 / (1 + e^(-4*x))
-
Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 2*x^3 + 9*x^2 + 7*x + 2 f2(x) = sin(7*x)*4 + 4 f3(x) = 8^x + 9 f4(x) = 1 / (1 + e^(-8*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 9*x^3 + 5*x^2 + 2*x + 6 f2(x) = sin(9*x)*4 + 7 f3(x) = 5^x + 2 f4(x) = 1 / (1 + e^(-6*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 9*x^3 + 7*x^2 + 5*x + 7 f2(x) = sin(5*x)*9 + 7 f3(x) = 6^x + 2 f4(x) = 1 / (1 + e^(-6*x))
-
Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 7*x^3 + 9*x^2 + 6*x + 3 f2(x) = sin(6*x)*5 + 7 f3(x) = 8^x + 3 f4(x) = 1 / (1 + e^(-4*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 4*x^3 + 8*x^2 + 8*x + 5 f2(x) = sin(3*x)*5 + 9 f3(x) = 9^x + 8 f4(x) = 1 / (1 + e^(-3*x))
-
Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 8*x^3 + 6*x^2 + 6*x + 8 f2(x) = sin(8*x)*2 + 2 f3(x) = 8^x + 3 f4(x) = 1 / (1 + e^(-6*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 7*x^3 + 7*x^2 + 5*x + 5 f2(x) = sin(7*x)*6 + 5 f3(x) = 8^x + 5 f4(x) = 1 / (1 + e^(-3*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 7*x^3 + 8*x^2 + 8*x + 2 f2(x) = sin(5*x)*4 + 3 f3(x) = 9^x + 2 f4(x) = 1 / (1 + e^(-9*x))
-
Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 4*x^3 + 3*x^2 + 3*x + 5 f2(x) = sin(4*x)*3 + 5 f3(x) = 7^x + 7 f4(x) = 1 / (1 + e^(-7*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 2*x^3 + 2*x^2 + 8*x + 5 f2(x) = sin(3*x)*6 + 4 f3(x) = 5^x + 3 f4(x) = 1 / (1 + e^(-4*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 7*x^3 + 2*x^2 + 3*x + 2 f2(x) = sin(2*x)*2 + 9 f3(x) = 6^x + 5 f4(x) = 1 / (1 + e^(-3*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 4*x^3 + 4*x^2 + 9*x + 8 f2(x) = sin(4*x)*7 + 3 f3(x) = 2^x + 7 f4(x) = 1 / (1 + e^(-8*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 5*x^3 + 4*x^2 + 4*x + 8 f2(x) = sin(8*x)*2 + 8 f3(x) = 5^x + 9 f4(x) = 1 / (1 + e^(-9*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 5*x^3 + 4*x^2 + 8*x + 7 f2(x) = sin(6*x)*6 + 5 f3(x) = 8^x + 4 f4(x) = 1 / (1 + e^(-5*x))
-
Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 8*x^3 + 3*x^2 + 7*x + 6 f2(x) = sin(9*x)*8 + 2 f3(x) = 7^x + 5 f4(x) = 1 / (1 + e^(-5*x))
-
Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 4*x^3 + 5*x^2 + 4*x + 6 f2(x) = sin(9*x)*6 + 6 f3(x) = 5^x + 5 f4(x) = 1 / (1 + e^(-6*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 2*x^3 + 7*x^2 + 3*x + 8 f2(x) = sin(8*x)*7 + 9 f3(x) = 6^x + 6 f4(x) = 1 / (1 + e^(-9*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 2*x^3 + 2*x^2 + 2*x + 7 f2(x) = sin(9*x)*5 + 5 f3(x) = 7^x + 6 f4(x) = 1 / (1 + e^(-3*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 4*x^3 + 8*x^2 + 8*x + 6 f2(x) = sin(7*x)*4 + 5 f3(x) = 7^x + 4 f4(x) = 1 / (1 + e^(-7*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 4*x^3 + 4*x^2 + 4*x + 9 f2(x) = sin(5*x)*4 + 7 f3(x) = 8^x + 6 f4(x) = 1 / (1 + e^(-4*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 9*x^3 + 5*x^2 + 9*x + 5 f2(x) = sin(8*x)*9 + 9 f3(x) = 4^x + 3 f4(x) = 1 / (1 + e^(-6*x))
-
Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 3*x^3 + 9*x^2 + 8*x + 9 f2(x) = sin(6*x)*7 + 3 f3(x) = 2^x + 6 f4(x) = 1 / (1 + e^(-2*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 8*x^3 + 9*x^2 + 9*x + 8 f2(x) = sin(9*x)*8 + 2 f3(x) = 8^x + 2 f4(x) = 1 / (1 + e^(-6*x))
Group 193
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 2*x^3 + 9*x^2 + 9*x + 3 f2(x) = sin(2*x)*5 + 7 f3(x) = 2^x + 7 f4(x) = 1 / (1 + e^(-8*x))
-
Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 3*x^3 + 2*x^2 + 4*x + 9 f2(x) = sin(3*x)*7 + 2 f3(x) = 4^x + 6 f4(x) = 1 / (1 + e^(-4*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 8*x^3 + 6*x^2 + 6*x + 6 f2(x) = sin(5*x)*2 + 7 f3(x) = 6^x + 6 f4(x) = 1 / (1 + e^(-4*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 4*x^3 + 9*x^2 + 3*x + 6 f2(x) = sin(5*x)*6 + 9 f3(x) = 3^x + 6 f4(x) = 1 / (1 + e^(-5*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 8*x^3 + 2*x^2 + 4*x + 3 f2(x) = sin(3*x)*9 + 3 f3(x) = 9^x + 8 f4(x) = 1 / (1 + e^(-7*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 9*x^3 + 2*x^2 + 8*x + 7 f2(x) = sin(5*x)*2 + 6 f3(x) = 5^x + 2 f4(x) = 1 / (1 + e^(-3*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 4*x^3 + 6*x^2 + 4*x + 8 f2(x) = sin(6*x)*2 + 2 f3(x) = 2^x + 4 f4(x) = 1 / (1 + e^(-3*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 2*x^3 + 7*x^2 + 5*x + 6 f2(x) = sin(3*x)*7 + 6 f3(x) = 8^x + 3 f4(x) = 1 / (1 + e^(-3*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 5*x^3 + 4*x^2 + 5*x + 8 f2(x) = sin(6*x)*5 + 9 f3(x) = 6^x + 4 f4(x) = 1 / (1 + e^(-4*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 5*x^3 + 7*x^2 + 9*x + 4 f2(x) = sin(2*x)*7 + 9 f3(x) = 9^x + 5 f4(x) = 1 / (1 + e^(-7*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 5*x^3 + 7*x^2 + 8*x + 5 f2(x) = sin(5*x)*2 + 8 f3(x) = 8^x + 3 f4(x) = 1 / (1 + e^(-3*x))
-
Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 3*x^3 + 9*x^2 + 2*x + 8 f2(x) = sin(9*x)*8 + 9 f3(x) = 2^x + 4 f4(x) = 1 / (1 + e^(-9*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 2*x^3 + 2*x^2 + 8*x + 9 f2(x) = sin(7*x)*6 + 9 f3(x) = 3^x + 4 f4(x) = 1 / (1 + e^(-3*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 6*x^3 + 9*x^2 + 6*x + 4 f2(x) = sin(6*x)*6 + 9 f3(x) = 3^x + 4 f4(x) = 1 / (1 + e^(-2*x))
-
Variant
f0(a, b, c, d) = AVG(a, b, c, d) = (a + b + c + d) / 4 f1(x) = 9*x^3 + 5*x^2 + 6*x + 2 f2(x) = sin(9*x)*8 + 9 f3(x) = 4^x + 3 f4(x) = 1 / (1 + e^(-7*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 7*x^3 + 6*x^2 + 8*x + 5 f2(x) = sin(9*x)*2 + 7 f3(x) = 7^x + 9 f4(x) = 1 / (1 + e^(-9*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 5*x^3 + 6*x^2 + 5*x + 5 f2(x) = sin(2*x)*3 + 6 f3(x) = 2^x + 7 f4(x) = 1 / (1 + e^(-3*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 5*x^3 + 4*x^2 + 3*x + 2 f2(x) = sin(4*x)*9 + 6 f3(x) = 7^x + 6 f4(x) = 1 / (1 + e^(-8*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 5*x^3 + 6*x^2 + 9*x + 9 f2(x) = sin(3*x)*2 + 7 f3(x) = 7^x + 3 f4(x) = 1 / (1 + e^(-7*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 5*x^3 + 9*x^2 + 4*x + 7 f2(x) = sin(2*x)*7 + 8 f3(x) = 5^x + 7 f4(x) = 1 / (1 + e^(-5*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 8*x^3 + 9*x^2 + 6*x + 3 f2(x) = sin(8*x)*3 + 5 f3(x) = 5^x + 9 f4(x) = 1 / (1 + e^(-7*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 2*x^3 + 2*x^2 + 4*x + 5 f2(x) = sin(8*x)*9 + 8 f3(x) = 2^x + 3 f4(x) = 1 / (1 + e^(-8*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 3*x^3 + 4*x^2 + 3*x + 6 f2(x) = sin(2*x)*7 + 8 f3(x) = 8^x + 6 f4(x) = 1 / (1 + e^(-5*x))
-
Variant
f0(a, b, c, d) = MAX(a, b, c, d) f1(x) = 5*x^3 + 8*x^2 + 2*x + 2 f2(x) = sin(6*x)*5 + 4 f3(x) = 6^x + 8 f4(x) = 1 / (1 + e^(-5*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 8*x^3 + 8*x^2 + 6*x + 9 f2(x) = sin(5*x)*7 + 7 f3(x) = 6^x + 3 f4(x) = 1 / (1 + e^(-2*x))
-
Variant
f0(a, b, c, d) = MIN(a, b, c, d) f1(x) = 8*x^3 + 6*x^2 + 5*x + 4 f2(x) = sin(2*x)*5 + 5 f3(x) = 5^x + 2 f4(x) = 1 / (1 + e^(-9*x))
-
Variant
f0(a, b, c, d) = L2(a, b, c, d) = sqrt(a^2 + b^2 + c^2 + d^2) f1(x) = 5*x^3 + 3*x^2 + 5*x + 7 f2(x) = sin(5*x)*4 + 4 f3(x) = 8^x + 2 f4(x) = 1 / (1 + e^(-9*x))