
Computer Architecture and Operating Systems
Lecture 13: Sockets

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Layer 1: Physical layer – handles the mechanical and
electrical details of the physical transmission of a bit stream

Layer 2: Data-link layer – handles the frames, or fixed-length
parts of packets, including any error detection and recovery
that occurred in the physical layer

Layer 3: Network layer – provides connections and routes
packets in the communication network, including handling
the address of outgoing packets, decoding the address of
incoming packets, and maintaining routing information for
proper response to changing load levels

Communication Protocol

2

Layer 4: Transport layer – responsible for low-level network
access and for message transfer between clients, including
partitioning messages into packets, maintaining packet order,
controlling flow, and generating physical addresses

Layer 5: Session layer – implements sessions, or process-to-
process communications protocols

Layer 6: Presentation layer – resolves the differences in
formats among the various sites in the network, including
character conversions, and half duplex/full duplex (echoing)

Layer 7: Application layer – interacts directly with the users,
deals with file transfer, remote-login protocols and electronic
mail, as well as schemas for distributed databases

Communication Protocol (Cont.)

3

Logical communication between two computers, with the three
lowest-level layers implemented in hardware

4

OSI Network Model

5

OSI Protocol Stack

6

OSI Network Message

OSI Model

The OSI model formalizes some of the earlier work done in
network protocols but was developed in the late 1970s and is
currently not in widespread use

The most widely adopted protocol stack is the TCP/IP model,
which has been adopted by virtually all Internet sites

The TCP/IP protocol stack has fewer layers than the OSI model.
Theoretically, because it combines several functions in each
layer, it is more difficult to implement but more efficient than
OSI networking

The relationship between the OSI and TCP/IP models is shown
in the next slide
 7

8

 The OSI and TCP/IP Protocol Stacks

TCP/IP Example

Every host has a name and an associated IP address
(host-id)
Hierarchical and segmented

Sending system checks routing tables and locates a
router to send packet
Router uses segmented network part of host-id to

determine where to transfer packet
This may repeat among multiple routers

Destination system receives the packet
Packet may be complete message, or it may need to be

reassembled into larger message spanning multiple packets

9

TCP/IP Example (Cont.)

Within a network, how does a packet move from sender
(host or router) to receiver?
Every Ethernet/WiFi device has a medium access control

(MAC) address
Two devices on same LAN communicate via MAC address
 If a system needs to send data to another system, it needs to

discover the IP to MAC address mapping
 Uses address resolution protocol (ARP)

A broadcast uses a special network address to signal that all
hosts should receive and process the packet
 Not forwarded by routers to different networks

10

Ethernet Packet

11

Transport Protocols UDP and TCP

Once a host with a specific IP address receives a packet, it
must somehow pass it to the correct waiting process
Transport protocols TCP and UDP identify receiving and

sending processes through the use of a port number
 Allows host with single IP address to have multiple server/client

processes sending/receiving packets
Well-known port numbers are used for many services

 FTP – port 21
 ssh – port 22
 SMTP – port 25
 HTTP – port 80

Transport protocol can be simple or can add reliability to
network packet stream

12

User Datagram Protocol

UDP is unreliable – bare-bones extension to IP with
addition of port number
Since there are no guarantees of delivery in the lower

network (IP) layer, packets may become lost
Packets may also be received out-out-order

UDP is also connectionless – no connection setup at
the beginning of the transmission to set up state
Also no connection tear-down at the end of transmission

UDP packets are also called datagrams

13

UDP Dropped Packet Example

14

Transmission Control Protocol

TCP is both reliable and connection-oriented

 In addition to port number, TCP provides abstraction to
allow in-order, uninterrupted byte-stream across an
unreliable network
Whenever host sends packet, the receiver must send an

acknowledgement packet (ACK). If ACK not received before a
timer expires, sender will resend.
 Sequence numbers in TCP header allow receiver to put

packets in order and notice missing packets
Connections are initiated with series of control packets called

a three-way handshake
 Connections also closed with series of control packets

15

TCP Data Transfer Scenario

16

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Sockets Interface

Client Server

socket
socket

bind

listen

read

write read

write

Connection
request

read

close

close
EOF

Await connection
request from
next client

open_listenfd
open_clientfd

accept connect

getaddrinfo getaddrinfo

17

Recall: Socket Address Structures
Generic socket address:

 For address arguments to connect, bind, and accept
 Necessary only because C did not have generic (void *) pointers when the

sockets interface was designed
 For casting convenience, we adopt the Stevens convention:
 typedef struct sockaddr SA;

struct sockaddr {

 uint16_t sa_family; /* Protocol family */

 char sa_data[14]; /* Address data. */

};

sa_family

Family Specific
18

Socket Address Structures

 Internet-specific socket address:
Must cast (struct sockaddr_in *) to (struct
sockaddr *) for functions that take socket address
arguments.

0 0 0 0 0 0 0 0

sa_family

Family Specific

struct sockaddr_in {

 uint16_t sin_family; /* Protocol family (always AF_INET) */

 uint16_t sin_port; /* Port num in network byte order */

 struct in_addr sin_addr; /* IP addr in network byte order */

 unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

};

sin_port

AF_INET

sin_addr

sin_family

19

Sockets Interface: socket

 Clients and servers use the socket function to create a socket descriptor:

 Example:

Protocol specific! Best practice is to use getaddrinfo to generate the parameters automatically, so that code is protocol independent.

int socket(int domain, int type, int protocol)

int clientfd = Socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using 32-bit IPV4
addresses

Indicates that the socket will be the
end point of a connection

20

Sockets Interface: bind

A server uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

The process can read bytes that arrive on the connection
whose endpoint is addr by reading from descriptor
sockfd.

Similarly, writes to sockfd are transferred along
connection whose endpoint is addr.

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int bind(int sockfd, SA *addr, socklen_t addrlen);

21

Sockets Interface: listen

By default, kernel assumes that descriptor from socket function
is an active socket that will be on the client end of a
connection.
A server calls the listen function to tell the kernel that a

descriptor will be used by a server rather than a client:

Converts sockfd from an active socket to a listening socket

that can accept connection requests from clients.

backlog is a hint about the number of outstanding
connection requests that the kernel should queue up before
starting to refuse requests.

int listen(int sockfd, int backlog);

22

Sockets Interface: accept

Servers wait for connection requests from clients by
calling accept:

Waits for connection request to arrive on the

connection bound to listenfd, then fills in client’s
socket address in addr and size of the socket address
in addrlen.
Returns a connected descriptor that can be used to

communicate with the client via Unix I/O routines.

int accept(int listenfd, SA *addr, int *addrlen);

23

Sockets Interface: connect

 A client establishes a connection with a server by calling connect:

 Attempts to establish a connection with server at socket address addr
 If successful, then clientfd is now ready for reading and writing.

 Resulting connection is characterized by socket pair

 (x:y, addr.sin_addr:addr.sin_port)

 x is client address

 y is ephemeral port that uniquely identifies client process on client host

Best practice is to use getaddrinfo to supply the arguments addr and
addrlen.

int connect(int clientfd, SA *addr, socklen_t addrlen);

24

accept Illustrated
listenfd(3)

Client 1. Server blocks in accept, waiting for
connection request on listening descriptor
listenfd clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by calling and
blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from accept. Client returns
from connect. Connection is now established
between clientfd and connfd connfd(4)

25

Connected vs. Listening Descriptors

Listening descriptor
 End point for client connection requests
 Created once and exists for lifetime of the server

Connected descriptor

 End point of the connection between client and server
 A new descriptor is created each time the server accepts a

connection request from a client
 Exists only as long as it takes to service client

Why the distinction?

 Allows for concurrent servers that can communicate over many client
connections simultaneously
 E.g., Each time we receive a new request, we fork a child to handle the request

26

Testing Servers Using telnet

The telnet program is invaluable for testing servers that
transmit ASCII strings over Internet connections
Our simple echo server
Web servers
Mail servers

Usage:
linux> telnet <host> <portnumber>

Creates a connection with a server running on <host> and
listening on port <portnumber>

27

Any Questions?

28

