
Computer Architecture and Operating Systems
Lecture 9: Inter-Process Communication

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Files

Pipes

Signals

Message Queues

Shared Memory

2

Inter-Process Communication

Asynchronous

One-byte

Delivered by OS (kill system call and utility)

Can be caught by OS or the process itself

Examples: Ctrl-C = SIGINT, Ctrl-\ = SIGQUIT, Ctrl-Z =
SIGTSTP

3

Signals

4

Never Ending Program

#include <stdio.h>

#include <unistd.h>

int main(int argc, char *argv[]) {

int i;

for(i=0;; i++) {

sleep(1);

printf("%d\n", i);

}

return 0;

}

Example program to be managed by signals:

 kill utility — send a signal to a process
 kill -l

 ⇒ (slightly) platform-depended

 kill -SIGNAL

 example: suspend (STOP) / continue (CONT)

 kill never-ending program with just kill, kill -HUP, 9, SEGV :), STOP, and CONT

 Types of processes (just a convention, both types runs by fork()/exec())
 interactive process: ⩽1 at each terminal can input and output to the terminal

 background process (runs from shell with '&'): any number can only output to the
terminal

 Changing type:
 ^Z to stop, fg to continue, bg to continue in background (complex)

 When background process inputs from tty, in immediately STOPped, we can fg it
5

Kill

Send a signal: see kill system call at https://www.man7.org/

6

Sending Signals: System Call Kill

#include <stdio.h>

#include <sys/types.h>

#include <signal.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

if (kill(atoi(argv[1]), atoi(argv[2])))

perror("Can not kill");

return 0;

}

Try to kill foreign or non-existent process

https://www.man7.org/

7

Handling Signals
#include <stdio.h>

#include <unistd.h>

#include <signal.h>

void handler(int sig) {

printf("Caught %d\n", sig);

}

int main(int argc, char *argv[]) {

signal(SIGINT, handler);

signal(SIGSEGV, handler);

int i;

for(i=0;; i++) {

sleep(1);

printf("%d\n", i);

}

return 0;

}

 Handler (signal):
 needs to be registered
 not all signals can be handled

(e. g. 9 and STOP/CONT)
 permission restrictions (by

process UID)

8

Looking After Child Processes
#include <stdio.h>

#include <wait.h>

#include <signal.h>

#include <unistd.h>

int main(int argc, char *argv[]) {

int stat;

pid_t pid;

if ((pid = fork()) == 0) {

while(1);

} else {

printf("Forking a child: %d\n", pid);

wait(&stat);

printf("And finally…\n");

if (WIFSIGNALED(stat))

psignal(WTERMSIG(stat), "Terminated:");

printf("Exit status: %d\n", stat);

}

return 0;

}

 See wait for
WIFSIGNALED/WTERMSIG macros

 See psignal

Base manpage: mq_overview at https://www.man7.org/

What we need for messaging:
Synchronous
Can store content
Can be queued
Can be prioritized
Every message is delivered over certain queue

9

Message Queues

https://www.man7.org/

10

Creating Message Queue

#include <mqueue.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

int main(int argc, char *argv[]) {

mqd_t mqd;

struct mq_attr attr;

attr.mq_maxmsg = 10;

attr.mq_msgsize = 2048;

mqd = mq_open(argv[1], O_RDWR|O_CREAT|O_EXCL, S_IRUSR|S_IWUSR, attr);

return 0;

}

 Queue is for 10 messages 2048 bytes each

 Queue is creating for read/write, if there is no queue
with the same name, or else an error is generated

 Omitting O_EXCL allows to re-create a queue with
the same name, purging all messages, whit is
probably not a good idea

11

Sending Messages

#include <mqueue.h>

#include <fcntl.h>

#include <string.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

mqd_t mqd;

unsigned int prio;

mqd = mq_open(argv[1], O_WRONLY);

prio = atoi(argv[2]);

mq_send(mqd, argv[3], strlen(argv[3]), prio);

return 0;

}

 Priority varies from 0 (lowest) to system-
depended maximum (at least 31, 32767 in
Linux)

 Message content is a byte array, it does not
have to be zero-terminating string

 POSIX queue provides prioritization
mechanism. Earliest massage from higher
priority messages subset is to be delivered
first.

12

Receiving Messages
#include <mqueue.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

mqd_t mqd;

unsigned int prio;

void *buf;

struct mq_attr attr;

ssize_t n;

mqd = mq_open(argv[1], O_RDONLY);

mq_getattr(mqd, &attr);

buf = malloc(attr.mq_msgsize);

n = mq_receive(mqd, buf, attr.mq_msgsize, &prio);

printf("Read %ld bytes; priority = %u\n", (long) n, prio);

free(buf);

return 0;

}

 Knowing nothing about message size, program
must retrieve this value from queue attributes
to provide an appropriate space in read buffer.

 There's no mechanism of message typification,
so only size is printed

 To remove a queue call mq_unlink(name)

 POSIX message API is implemented in librt
library, so compile program with -lrt option.

Every mq_receive call returns a message if there's
one. If queue is empty, mq_receive() can wait for
message or return with fail status, depending on
O_NONBLOCK flag.

There's alternate method to notify program by signal:
a program calls mq_notify to subscribe on certain
queue. Every time message is arrived in queue, the
program gets a signal described in mq_notify() and
can handle message asynchronously.

13

Notifying

 Kernel has a paging mechanism. When memory is limited, some memory
pages can be swapped out. When a program needs one of them:
 TLB produces page miss (no physical memory is provided for the virtual address);

 Kernel a loads corresponding page from disk and links to virtual memory page.

 If paging out a .text section, there is no need to provide a space on swap,
because this data is already on disk — e. g. in the binary program file, from
which the process was started.

 More general process of mapping file to memory is called memory map.

 System call mmap asks kernel to map selected file to the virtual memory
address range. After this done, the range can be used as an ordinary array
filled with file's contents. The file has not to be read into memory completely,
Linux use paging mechanism to represent corresponded file parts.

14

Memory Mapping

15

Memory Mapping : System Calls

#include <sys/mman.h>

#include <sys/stat.h>

#include <stdio.h>

#include <fcntl.h>

int main(int argc, char *argv[]) {

char *addr;

int fd;

struct stat sb;

fd = open(argv[1], O_RDONLY);

fstat(fd, &sb);

addr = mmap(NULL, sb.st_size, PROT_READ, MAP_PRIVATE, fd, 0);

fwrite(addr, 1, sb.st_size, stdout);

return 0;

}

 PROT_READ means that memory-mapped pages can
only be read by the program

 MAP_PRIVATE means the program observe some
fixed state of the file

 write to memory-mapped area does not change the
file itself

 program supposes file can not be changed while
memory-mapped in MAP_PRIVATE mode

 fstat is used to determine file size (it discovers other
file properties as well)

Example of simple cat analog, that memory-maps file and than just writes it to stdout:

See page shm_overview at https://man7.org

Multiple processes can have some of their virtual memory
pages translated to the same physical page. Then they can
communicate through this shared area called shared memory.

POSIX shared memory implemented over memory-mapped file
abstraction.

First we need to open named shared memory object (shared
memory analog of queue, shmobj for short). Programs can
memory-map this object, read and write to it. 16

Shared Memory

https://man7.org/

17

Shared Memory : Create

#include <stdio.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/mman.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

int fd;

size_t size;

void *addr;

fd = shm_open(argv[1], O_RDWR|O_CREAT|O_EXCL, S_IRUSR|S_IWUSR);

size = atol(argv[2]);

ftruncate(fd, size);

addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

close(fd);

return 0;

}

 Modes and permissions of the object are the same as when
creating a queue.

 There is no sense in having newly created shmobj size other than
zero, so ftruncate() call.

 We call mmap() for declaring the object shared (with
MAP_SHARED, of course).

Open named shared memory object (shared memory analog of queue, shmobj for short).

Programs can mmap this object, read and write to it.

18

Shared Memory : Write

#include <stdio.h>

#include <fcntl.h>

#include <sys/mman.h>

#include <string.h>

#include <unistd.h>

int main(int argc, char *argv[]) {

int fd;

size_t len;

char *addr;

fd = shm_open(argv[1], O_RDWR, 0);

len = strlen(argv[2]);

ftruncate(fd, len);

addr = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

close(fd);

printf("Copying %d bytes\n", len);

memcpy(addr, argv[2], len);

return 0;

}

 There is no difference if you open shmobj for
reading/writing or just writing, it is memory

 The smobj descriptor only needed when opening
shmobj, we can close it just after mmap()

To write to the shared memory, program opens shmobj,
mmaps it and uses the memory as ordinary array

19

Shared Memory : Read
#include <stdio.h>

#include <fcntl.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <unistd.h>

int main(int argc, char *argv[]) {

int fd;

char *addr;

struct stat sb;

fd = shm_open(argv[1], O_RDONLY, 0);

fstat(fd, &sb);

addr = mmap(NULL, sb.st_size, PROT_READ, MAP_SHARED, fd, 0);

close(fd);

fwrite(addr, 1, sb.st_size, stdout);

printf("\n… Done");

return 0;

}

To read from shared memory, the program opens
shmobj and tread it like mmapped file:

 Note fstat can be used to determine shared
memory size as well as to determine file size

 As usual, to stop using shmobj, one shall
unlink it with shm_unlink(name)

Any Questions?

20

