Faculty (°

Computer
science

Highar Ssbseel of Eranomics

NATIONAL RESEARCH
UNIVERSITY

Computer Architecture and Operating Systems

Lecture 7: 1/O and Files

Andrei Tatarnikov

atatarnikov@hse.ru
@andrewt0301

Unix I/O Overview

" A Linux IS a sequence of m bytes:
B,,B,,...,B,..,B

m-1

=All 1/O devices are represented as files:
/dev/sda2 (/usr disk partition)
/dev/tty2 (terminal)

"Even the kernel is represented as a file:
/boot/vmlinuz-3.13.0-55-generic (kernelimage)
/proc (kernel data structures)

Unix I/O Overview

"Elegant mapping of files to devices allows kernel
to export simple interface called Unix I/O:

Opening and closing files

"open()andclose() By [By [B..[B [B..]eee

Reading and writing a file f

Current file position = k
" read () and write ()

Changing the (seek)

= indicates next offset into file to read or write

"]lseek () e

File Types

"Each file has a type indicating its role in the system
Regular file: Contains arbitrary data
Directory: Index for a related group of files

"Other file types
Named pipes (FIFOs)
Symbolic links
Character and block devices

Sockets for communicating with a process on another
machine

Regular Files

" A regular file contains arbitrary data

" Applications often distinguish between text files and binary files
Text files are regular files with only ASCII or Unicode characters
Binary files are everything else
= e.g., object files, JPEG images
Kernel does not know the difference!

= Text file is sequence of text lines

Text line is sequence of chars terminated by newline char (‘\n’)
= Newline is 0xa, same as ASCII line feed character (LF)

" End of line (EOL) indicators in other systems

Linux and Mac OS: ‘\n’ (Oxa)
= |ine feed (LF)

Windows and Internet protocols: ‘\r\n’ (0xd 0Oxa)
= Carriage return (CR) followed by line feed (LF) e

Directories

"Directory consists of an array of links
Each link maps a filename to a file

"Each directory contains at least two entries
. (dot) is alink to itself

. . (dot dot) is a link to the parent directory in the
directory hierarchy (next slide)

" Commands for manipulating directories
mkdir: create empty directory

1s: view directory contents
rmdir: delete empty directory

Directory Hierarchy

= All files are or%a;nized as a hierarchy anchored by root directory

named / (slas /

———— T

bin/ dev/ etc/ home/ usr/
bash ttyl group passwd acos/ andrewt/ include/ bin/
hello.c stdio.h sys/ vim

unistd.h

» Kernel maintains current working directory (cwd) for each process
Modified using the cd command

" | ocations of files in the hierarchy denoted by pathnames

Absolute pathname starts with ‘/’ and denotes path from root
" /home/acos/hello.c

Relative pathname denotes path from current working directory

= _/home/acos/hello.c

/ cwd: /home/andrewt
bin/ dev/ etc/ home/ usr/
bash ttyl group passwd acos/ andrewt/ include/ bin/
hello.c stdio.h sys/ vim

unistd.h °

Linux Filesystem Hierarchy Standard

= /bin — Essential user command binaries (for use by all users)

= /boot — Static files of the boot loader

= /dev — Device files

= [etc — Host-specific system configuration

= /home — User home directories (optional)

= [lib — Essential shared libraries and kernel modules

= [lib<qual> — Alternate format essential shared libraries (optional)

= /media — Mount point for removable media

= /mnt — Mount point for a temporarily mounted filesystem

= /opt — Add-on application software packages

= /root — Home directory for the root user

= /proc — Virtual filesystem providing process and kernel information as files

= /run — Run-time variable data

= /sbin — System binaries

= /srv — Data for services provided by this system

= /sys — Kernel and system information virtual filesystem

= /tmp — Temporary files

= [fusr— Secondary hierarchy for read-only user data; contains the majority of (multi-) user tools

= /var — Variable files: files whose content is expected to change during normal operation of the
system °

Virtual File Systems

(VFS) on Unix provide an object-
oriented way of implementing file systems

=\/FS allows the same system call interface (the API) to
be used for different types of file systems

Separates file-system generic operations from
implementation details

Implementation can be one of many file systems types, or

network file system
" Implements which hold inodes or network file details

Then dispatches operation to appropriate file system
implementation routines

Virtual File Systems (Cont.)

"The APl is to the VFS interface, rather than any specific
type of file system

file-system interface

VFS interface

local file system local file system remote file system
type 1 type 2 type 1

h 4 i A 4 i \
y
- - network

Virtual File System Implementation

" For example, Linux has four object types:
inode, file, superblock, dentry

=\/FS defines set of operations on the objects that must
be implemented

Every object has a pointer to a function table

" Function table has addresses of routines to implement that function
on that object

" For example:

"meint open(...)— Openafile

"meint close(...)— Close an already-open file
"me ssize t read(...)— Readfrom afile
"essize t write(...)— Writeto afile

"eint mmap(...)— Memory-map afile

5 parts of a Linux Disk

= Boot Block
Contains boot loader

= Superblock
The file systems “header”
Specifies location of file system data structures

" inode area
Contains descriptors (inodes) for each file on the disk
All inodes are the same size
Head of the inode free list is stored in superblock

" File contents area
Fixed size blocks containing data
Head of freelist stored in superblock

= Swap area
Part of disk given to virtual memory system

Inode Format

= User and group IDs
= Protection bits
= Access times
= File Type
Directory, normal file, symbolic link, etc
= Size
Length in bytes

= Block list
Location of data blocks in file contents area

" Link Count
Number of directories (hard links) referencing this inode

Unix Filesystem (Inodes)

Ownership, permissions
Access/Modification times
etc...

Array of consecutive data
blocks

Block size = 512 bytes
Inlined in the inode

mode

owners (2)

timestamps (3)

)
size block count
direct blocks .
-
— s+—{data | —{data |
single indirect ——»E . m
i =——{ data | 4> =
double indirect _ data | _|? |2t »] data |
triple indirect = >+s—[data |
[=]] data |

i-node only holds a small number of data block pointers (direct pointers)
For larger files, i-node points to an indirect block containing 1024 4-byte entries in a 4K block
Each indirect block entry points to a data block
Can have multiple levels of indirect blocks for even larger files

Opening Files

" Opening a file informs the kernel that you are getting ready to access

that file e

/* file descriptor */

if ((fd = open("/etc/hosts", O RDONLY)) < 0) {
perror ("open") ;
exit (1) ;

}

= Returns a small identifying integer file descriptor

fd == -1 indicates that an error occurred

" Each process created by a Linux shell begins life with three open files
associated with a terminal:
0: standard input (stdin)
1: standard output (stdout)
2: standard error (stderr) @

Closing Files

" Closing a file informs the kernel that you are finished
accessing that file

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror ("close") ;
exit (1) ;

}

" Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

" Moral: Always check return codes, even for seemingly
benign functions such as close ()

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof (buf))) < 0)
perror ("read") ;
ex1it (1) ;

}

{

= Returns number of bytes read from file £d into buf

Return type ssize tissigned integer
nbytes < 0 indicates that an error occurred
(nbytes < sizeof (buf)) are possible and are not errors!

Reading Files

= Reading a file copies bytes from the current file position to memory,
and then updates file position

Writing Files

= Writing a file copies bytes from memory to the current file
position, and then updates current file position

char buf[512];

int fd; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */
1f ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
perror ("write");
exit (1),
}

= Returns number of bytes written from buf to file £d

nbytes < 0 indicates that an error occurred

As with reads, short counts are possible and are not errors! @

Simple Unix I/0 example

" Copying stdin to stdout, one byte at a time

#include <unistd.h>

int main(void)
{

char c;

while (read (STDIN_ FILENO,
write (STDOUT FILENO,
exit (0);

&c, 1)

&c, 1);

On Short Counts

=Short counts can occur in these situations:
Encountering (end-of-file) EOF on reads
Reading text lines from a terminal
Reading and writing network sockets

sShort counts never occur in these situations:
Reading from disk files (except for EOF)
Writing to disk files

"Best practice is to always allow for short counts.

File Metadata

is data about data, in this case file data

" Per-file metadata maintained by kernel
accessed by users with the stat and £stat functions

/* Metadata returned by the stat and fstat functions */
struct stat {

dev t st dev; /* Device */

ino t st _ino; /* inode */

mode t st mode; /* Protection and file type */
nlink t st nlink; /* Number of hard links */

uid t st uid; /* User ID of owner */

gid t st gid; /* Group ID of owner */

dev_t st rdev; /* Device type (if inode device) */
off t st size; /* Total size, in bytes */

unsigned long st blksize; /* Blocksize for filesystem I/0O */
unsigned long st blocks; /* Number of blocks allocated */
time t st _atime; /* Time of last access */

time t st mtime; /* Time of last modification */
time t st ctime; /* Time of last change */

¥

Example of Accessing File Metadata

./statcheck statcheck.c

statcheck.c

linux>
type: regular, read: yes

int main

{

(Lnt argc, char **argv)

struct stat stat;
char *type, *readok;

Stat (argv[1l], &stat);
1f (S _ISREG(stat.st mode))

type = "regular";

else 1f (S ISDIR(stat.st mode))
type = "directory";

else
type = "other";

1f ((stat.st mode & S IRUSR))
readok = "yes";

else
readok = "no";

printf ("type: %s, read: %s\n",

exit (0) ;

linux> chmod 000 statcheck.c
linux> ./statcheck statcheck.c
type: regular, read: no

linux> ./statcheck

type: directory, read: yes

/* Determine file type */

/* Check read access */

type, readok);

How the Unix Kernel Represents Open Files

" Two descriptors referencing two distinct open files.
Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

_File A (terminal)

stdin fdO — File access
stdout fd1 - | Flle pos F||e size InfO in
stderr fd?2 File t stat
refcnt=1 e e
fd3 : i struct
fd4 —~— : 5
i File access
) File size
File pos
refcnt=1 File type

File Sharing

" Two distinct descriptors sharing the same disk file through two
distinct open file table entries

E.g., Calling open twice with the same filename argument

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
File A (disk)
stdin fdO = File access
stdout fd1 . TP
File size
stderr fd2 File pos :
fd3 refcnt=1 File type
fd 4 : :
\F”e B (diSk)
/
File pos
refcnt=1

How Processes Share Files: £fork

" A child process inherits its parent’s open files
Note: situation unchanged by exec functions (use £cntl to change)

fork call:

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

_File A (terminal) -
stdin fdO — File access

stdout fdl1l ==) . .
File size
stderr fd?2 dlls pos)
fd3 refcnt=1 File type
fdd |~ : 5
I File access
) File size
File pos
refcnt=1 File t.ype

How Processes Share Files: fork

" A child process inherits its parent’s open files

" After fork:
Child’s table same as parent’s, and +1 to each refcnt

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
Parent _File A (terminal) -
fd 0 / — File access
fd1 — . .
File size
42 File pos -
fd3 refcnt=2 File type
fda | — : :
40 7 I File access
fd1 7 File pos File size
:g refcnt=2 File t.ype
fda| — |

1/0 Redirection

= Question: How does a shell implement I/O redirection?
linux> ls > foo.txt

" Answer: By calling the dup?2 (ol1dfd, newfd) function
Copies (per-process) descriptor table entry o1ldfd to entry newfd

Descriptor table Descriptor table
before dup2 (4, 1) after dup2 (4, 1)
fd O fd 0

fdl|a fdl|b

fd 2 fd 2

fd 3 fd 3

fd4|b fd4|b

/O Redirection Example

= Step #1: open file to which stdout should be redirected
Happens in child executing shell code, before exec

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

“File A -
stdin fdO — File access
stdout fdl1l ==) . .
File size
stderr fd?2 dlls pos)
fd3 refcnt=1 File type
fd 4 ~ : :
i File access
) File size
File pos
refcnt=1 File type

/O Redirection Example (cont.)

uStep #2: call dup2 (4, 1)
cause fd=1 (stdout) to refer to disk file pointed at by fd=4

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A -
stdin fdO — File access
stdout fdl1l .) Fi .
ile size
stderr fd?2 N File pos)
fd3 refcnt=0 File type
fd 4 ~ : :
File B
i File access
) File size
File pos
refcnt=2 File type

Standard I/O Functions

*The C standard library (Libc. so) contains a
collection of higher-level functions
Documented in Appendix B of K&R

=Examples of standard |I/O functions:

Opening and closing files (fopen and f£close)
Reading and writing bytes (fread and fwrite)
Reading and writing text lines (Egets and £puts)
~ormatted reading and writing (Escanf and fprintf)

Standard I/O Streams

= Standard I/O models open files as
Abstraction for a file descriptor and a buffer in memory

" C programs begin life with three open streams

(defined in stdio.h)

stdin (standard input)
stdout (standard output)
stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf (stdout, "Hello, world\n");

}

Buffered 1/0: Motivation

" Applications often read/write one character at a time
getc, putc, ungetc
gets, fgets
= Read line of text one character at a time, stopping at newline
" Implementing as Unix I/O calls expensive
read and write require Unix kernel calls
= > 10,000 clock cycles
" Solution: Buffered read
Use Unix read to grab block of bytes

User input functions take one byte at a time from buffer
= Refill buffer when empty

Buffer | already read unread

Buffering in Standard 1/0

= Standard 1/O functions use buffered I/0O

printf ("h");

printf ("e");

printf ("1");
printf("1");

printf ("o");

buf | printf ("\n") ;

|

hlell]l Il lol\n

fflush (stdout) ;

write (1, buf, 6);

= Buffer flushed to output fd on “\n”, call to ££1ush or
exit, orreturn frommain. @

Standard 1/O Buffering in Action

"You can see this buffering in action for yourself, using
the always fascinating Linux strace program:

{

#include <stdio.h>

int main ()

printf ("
printf ('
printf ("
printf ("
(
(
(

== o0 o

printf ("o") ;
printf ("\n");
fflush (stdout) ;
ex1t (0);

linux> strace ./hello

execve ("./hello", ["hello"],

write (1, "hello\n", 6)

exit group (0)

- */1) .

6

&

= Standard I/0 are implemented using low-level Unix /0

Unix I/O vs. Standard I/0O

fopen
fread
fscanft
sscant
fgets
fflush
fclose

fdopen
fwrite
fprintf
sprintf
fputs
fseek

open

stat

read

write lseek

close

" Which ones should you use in your programs?

| 2
\

C application program

| standard /O

functions

__| Unix 1/O functions

(accessed via system calls)

Pros and Cons of Unix I/O

" Pros

Unix I/O is the most general and lowest overhead form of |/O
= All other I/O packages are implemented using Unix 1/O functions

Unix I/O provides functions for accessing file metadata

Unix I/O functions are async-signal-safe and can be used safely
in signal handlers

=Cons
Dealing with short counts is tricky and error prone

Efficient reading of text lines requires some form of buffering,
also tricky and error prone

Both of these issues are addressed by the standard I/O and
RIO packages

Pros and Cons of Standard 1/0

®"Pros:

Buffering increases efficiency by decreasing the number
of read and write system calls

Short counts are handled automatically

=Cons:
Provides no function for accessing file metadata

Standard I/O functions are not async-signal-safe, and not
appropriate for signal handlers

Standard 1/O is not appropriate for input and output on
network sockets

Choosing I/O Functions

" General rule: use the highest-level |/O functions you can

Many C programmers are able to do all of their work using the
standard I/O functions

But, be sure to understand the functions you use!

= \When to use standard 1/O
When working with disk or terminal files

= \When to use raw Unix I/O
Inside signal handlers, because Unix I/O is async-signal-safe
In rare cases when you need absolute highest performance

= \When to use RIO

When you are reading and writing network sockets
Avoid using standard 1/0O on sockets

Aside: Working with Binary Files

" Functions you should never use on binary files
Text-oriented |/O such as £fgets, scanf
= Interpret EOL characters

String functions

" strlen, strcpy, strcat
= [nterprets byte value O (end of string) as special

Fun with File Descriptors (1)

#include <unistd.h>

int main (int argc,

{
int fdl1l, £f£d2, £
char c¢l, c2, c3
char *fname = a

fdl = open (fname, O RDONLY, O0);
open (fname, O RDONLY, O0);
open (fname, O RDONLY, O0);

fd2
fd3 =
dup2 (£fd2, £d3);
read (fdl, &cl,
read (fd2, &c2,
read (£fd3, &c3,
printf ("cl = %c
return 0O;

char *argv|[])

d3;

rgv[1l];

1);
1);
1);
, c2 = %c, c3 =

14

c2, c3);

ffilesl.c

= What would this program print for file containing “abcde”?

Fun with File Descriptors (2)

#include <unistd.h>

int main(int argc, char *argvl(])

{
int fdil;
int s = getpid() & 0x1;
char cl, c2;
char *fname = argv([1l];
fdl = open(fname, O RDONLY,
Read (fdl, &cl, 1);
if (fork()) { /* Parent */
sleep(s);
read (fdl, &c2, 1);
printf ("Parent: cl = %
} else { /* Child */
sleep(l-s);
read (£fdl, &c2, 1);
printf ("Child: cl = %c,
}
return O;

}

sc\n",

ffiles2.c

* What would this program print for file containing “abcde”?

Fun with File Descriptors (3)

#include <unistd.h>
int main(int argc, char *argv([])
{
int f£dl, f£d2, £d3;
char *fname = argv[l];
fdl = open(fname, O CREAT|O TRUNC|O RDWR, S TRUSR|S IWUSR) ;
write (£dl, "pgrs", 4);
fd3 = open(fname, O APPEND|O WRONLY, O0);
write (£d3, "jklmn", 5);
fd2 = dup(fdl); /* Allocates descriptor */
write (£d2, "wxyz", 4);
write (£d4d3, "ef", 2);
return O;

} ffiles3.c

" What would be the contents of the resulting file?

Accessing Directories

"Only recommended
operation on a
directory: read its
entries

dirent structure
contains information
about a directory entry

DIR structure contains
information about
directory while
stepping through its
entries

#include <sys/types.

#include <dirent.h>

{

DIR *directory;

struct dirent *de;

if

(! (directory =
error ("Failed
while (0 != (de =

}

printf ("Found

h>

opendir (dir name)))
to open directory");

readdir (directory)))

file: %s\n", de->d name);

closedir (directory) ;

{

Any Questions?

. cext

start: addi t1,
addi t2, zero, Ox271

beg tl1, t2, done

Zzexro, 0x18

cycle:
slt ttO, twl1, tZ2
bne t0O0, zZero, if less
nop B
sub tl1l, tl1, tZ2
J cycle
nop
1f less: sub t2, t2, tl1
J cycle

done: add t3, tl, =zZero

