
Computer Architecture and Operating Systems
Lecture 7: I/O and Files

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Unix I/O Overview

A Linux file is a sequence of m bytes:
B0 , B1 , , Bk , , Bm-1

All I/O devices are represented as files:
/dev/sda2 (/usr disk partition)
/dev/tty2 (terminal)

Even the kernel is represented as a file:
/boot/vmlinuz-3.13.0-55-generic (kernel image)
/proc (kernel data structures)

2

Unix I/O Overview

Elegant mapping of files to devices allows kernel
to export simple interface called Unix I/O:

Opening and closing files

 open()and close()

Reading and writing a file

 read() and write()

Changing the current file position (seek)

 indicates next offset into file to read or write

 lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

3

File Types

Each file has a type indicating its role in the system
Regular file: Contains arbitrary data
Directory: Index for a related group of files

Other file types
Named pipes (FIFOs)
Symbolic links
Character and block devices
Sockets for communicating with a process on another

machine

4

Regular Files
A regular file contains arbitrary data

Applications often distinguish between text files and binary files
 Text files are regular files with only ASCII or Unicode characters
 Binary files are everything else

 e.g., object files, JPEG images

 Kernel does not know the difference!

Text file is sequence of text lines
 Text line is sequence of chars terminated by newline char (‘\n’)

 Newline is 0xa, same as ASCII line feed character (LF)

End of line (EOL) indicators in other systems
 Linux and Mac OS: ‘\n’ (0xa)

 line feed (LF)

Windows and Internet protocols: ‘\r\n’ (0xd 0xa)
 Carriage return (CR) followed by line feed (LF)

5

Directories

Directory consists of an array of links
Each link maps a filename to a file

Each directory contains at least two entries
. (dot) is a link to itself
.. (dot dot) is a link to the parent directory in the

directory hierarchy (next slide)

Commands for manipulating directories
mkdir: create empty directory
ls: view directory contents
rmdir: delete empty directory

6

Directory Hierarchy

 All files are organized as a hierarchy anchored by root directory
named / (slash)

 Kernel maintains current working directory (cwd) for each process

 Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd acos/ andrewt/ include/ bin/

stdio.h vim sys/

unistd.h

hello.c

7

Pathnames
Locations of files in the hierarchy denoted by pathnames
Absolute pathname starts with ‘/’ and denotes path from root

 /home/acos/hello.c

Relative pathname denotes path from current working directory
 ../home/acos/hello.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd acos/ andrewt/ include/ bin/

stdio.h vim sys/

unistd.h

hello.c

cwd: /home/andrewt

8

 /bin – Essential user command binaries (for use by all users)
 /boot – Static files of the boot loader
 /dev – Device files
 /etc – Host-specific system configuration
 /home – User home directories (optional)
 /lib – Essential shared libraries and kernel modules
 /lib<qual> – Alternate format essential shared libraries (optional)
 /media – Mount point for removable media
 /mnt – Mount point for a temporarily mounted filesystem
 /opt – Add-on application software packages
 /root – Home directory for the root user
 /proc – Virtual filesystem providing process and kernel information as files
 /run – Run-time variable data
 /sbin – System binaries
 /srv – Data for services provided by this system
 /sys – Kernel and system information virtual filesystem
 /tmp – Temporary files
 /usr – Secondary hierarchy for read-only user data; contains the majority of (multi-) user tools
 /var – Variable files: files whose content is expected to change during normal operation of the

system 9

Linux Filesystem Hierarchy Standard

Virtual File Systems

Virtual File Systems (VFS) on Unix provide an object-
oriented way of implementing file systems
VFS allows the same system call interface (the API) to

be used for different types of file systems
Separates file-system generic operations from

implementation details
 Implementation can be one of many file systems types, or

network file system
 Implements vnodes which hold inodes or network file details

Then dispatches operation to appropriate file system
implementation routines

10

Virtual File Systems (Cont.)

The API is to the VFS interface, rather than any specific
type of file system

11

Virtual File System Implementation

For example, Linux has four object types:
 inode, file, superblock, dentry

VFS defines set of operations on the objects that must
be implemented
Every object has a pointer to a function table

 Function table has addresses of routines to implement that function
on that object

 For example:
 • int open(...)— Open a file
 • int close(...)— Close an already-open file
 • ssize t read(...)— Read from a file
 • ssize t write(...)— Write to a file
 • int mmap(...)— Memory-map a file

12

5 parts of a Linux Disk
 Boot Block

 Contains boot loader

 Superblock
 The file systems “header”
 Specifies location of file system data structures

 inode area
 Contains descriptors (inodes) for each file on the disk
 All inodes are the same size
 Head of the inode free list is stored in superblock

 File contents area
 Fixed size blocks containing data
 Head of freelist stored in superblock

 Swap area
 Part of disk given to virtual memory system

13

Inode Format
User and group IDs
Protection bits
Access times
File Type

 Directory, normal file, symbolic link, etc

Size
 Length in bytes

Block list
 Location of data blocks in file contents area

Link Count
 Number of directories (hard links) referencing this inode

14

Unix Filesystem (Inodes)

Metadata
 Ownership, permissions
 Access/Modification times
 etc…

Direct blocks:
 Array of consecutive data

blocks
 Block size = 512 bytes
 Inlined in the inode

 Indirect blocks:
• i-node only holds a small number of data block pointers (direct pointers)
• For larger files, i-node points to an indirect block containing 1024 4-byte entries in a 4K block
• Each indirect block entry points to a data block
• Can have multiple levels of indirect blocks for even larger files

 15

Opening Files
Opening a file informs the kernel that you are getting ready to access

that file

 Returns a small identifying integer file descriptor

 fd == -1 indicates that an error occurred

 Each process created by a Linux shell begins life with three open files

associated with a terminal:

 0: standard input (stdin)

 1: standard output (stdout)

 2: standard error (stderr)

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {

 perror("open");

 exit(1);

}

16

Closing Files
Closing a file informs the kernel that you are finished

accessing that file

Closing an already closed file is a recipe for disaster in

threaded programs (more on this later)
Moral: Always check return codes, even for seemingly

benign functions such as close()

int fd; /* file descriptor */

int retval; /* return value */

if ((retval = close(fd)) < 0) {

 perror("close");

 exit(1);

}

17

Reading Files
 Reading a file copies bytes from the current file position to memory,

and then updates file position

 Returns number of bytes read from file fd into buf
 Return type ssize_t is signed integer

 nbytes < 0 indicates that an error occurred

 Short counts (nbytes < sizeof(buf)) are possible and are not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

 perror("read");

 exit(1);

}

18

Writing Files
Writing a file copies bytes from memory to the current file

position, and then updates current file position

Returns number of bytes written from buf to file fd

 nbytes < 0 indicates that an error occurred

 As with reads, short counts are possible and are not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

 perror("write");

 exit(1);

}

19

Simple Unix I/O example

Copying stdin to stdout, one byte at a time

#include <unistd.h>

int main(void)

{

 char c;

 while(read(STDIN_FILENO, &c, 1) != 0)

 write(STDOUT_FILENO, &c, 1);

 exit(0);

}

20

On Short Counts

Short counts can occur in these situations:
Encountering (end-of-file) EOF on reads
Reading text lines from a terminal
Reading and writing network sockets

Short counts never occur in these situations:
Reading from disk files (except for EOF)
Writing to disk files

Best practice is to always allow for short counts.

21

File Metadata
Metadata is data about data, in this case file data
Per-file metadata maintained by kernel
accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */

struct stat {

 dev_t st_dev; /* Device */

 ino_t st_ino; /* inode */

 mode_t st_mode; /* Protection and file type */

 nlink_t st_nlink; /* Number of hard links */

 uid_t st_uid; /* User ID of owner */

 gid_t st_gid; /* Group ID of owner */

 dev_t st_rdev; /* Device type (if inode device) */

 off_t st_size; /* Total size, in bytes */

 unsigned long st_blksize; /* Blocksize for filesystem I/O */

 unsigned long st_blocks; /* Number of blocks allocated */

 time_t st_atime; /* Time of last access */

 time_t st_mtime; /* Time of last modification */

 time_t st_ctime; /* Time of last change */

}; 22

Example of Accessing File Metadata

int main (int argc, char **argv)

{

 struct stat stat;

 char *type, *readok;

 Stat(argv[1], &stat);

 if (S_ISREG(stat.st_mode)) /* Determine file type */

 type = "regular";

 else if (S_ISDIR(stat.st_mode))

 type = "directory";

 else

 type = "other";

 if ((stat.st_mode & S_IRUSR)) /* Check read access */

 readok = "yes";

 else

 readok = "no";

 printf("type: %s, read: %s\n", type, readok);

 exit(0);

}

linux> ./statcheck statcheck.c

type: regular, read: yes

linux> chmod 000 statcheck.c

linux> ./statcheck statcheck.c

type: regular, read: no

linux> ./statcheck ..

type: directory, read: yes

statcheck.c

23

How the Unix Kernel Represents Open Files

Two descriptors referencing two distinct open files.
Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat
struct

24

File Sharing
Two distinct descriptors sharing the same disk file through two

distinct open file table entries
 E.g., Calling open twice with the same filename argument

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File A (disk)

File B (disk)

25

How Processes Share Files: fork

A child process inherits its parent’s open files
 Note: situation unchanged by exec functions (use fcntl to change)

Before fork call:

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

26

How Processes Share Files: fork

A child process inherits its parent’s open files
After fork:
Child’s table same as parent’s, and +1 to each refcnt

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=2

...

File pos

refcnt=2

...

File access
...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

fd 0

fd 1

fd 2

fd 3

fd 4

Parent

Child

27

I/O Redirection

Question: How does a shell implement I/O redirection?
linux> ls > foo.txt

Answer: By calling the dup2(oldfd, newfd) function
 Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

28

I/O Redirection Example

 Step #1: open file to which stdout should be redirected
Happens in child executing shell code, before exec

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File A

File pos

refcnt=1

...

File access

...

File size

File type

File B

29

I/O Redirection Example (cont.)

Step #2: call dup2(4,1)
cause fd=1 (stdout) to refer to disk file pointed at by fd=4

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=0

...

File pos

refcnt=2

...

stderr

stdout

stdin File access
...

File size

File type

File access

...

File size

File type

File A

File B

30

Standard I/O Functions

The C standard library (libc.so) contains a
collection of higher-level standard I/O functions
Documented in Appendix B of K&R

Examples of standard I/O functions:
Opening and closing files (fopen and fclose)
Reading and writing bytes (fread and fwrite)
Reading and writing text lines (fgets and fputs)
Formatted reading and writing (fscanf and fprintf)

31

Standard I/O Streams

Standard I/O models open files as streams
Abstraction for a file descriptor and a buffer in memory

C programs begin life with three open streams
(defined in stdio.h)
stdin (standard input)
stdout (standard output)
stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */

extern FILE *stdout; /* standard output (descriptor 1) */

extern FILE *stderr; /* standard error (descriptor 2) */

int main() {

 fprintf(stdout, "Hello, world\n");

} 32

Buffered I/O: Motivation

Applications often read/write one character at a time
getc, putc, ungetc

gets, fgets
 Read line of text one character at a time, stopping at newline

 Implementing as Unix I/O calls expensive
read and write require Unix kernel calls

 > 10,000 clock cycles

Solution: Buffered read
Use Unix read to grab block of bytes
User input functions take one byte at a time from buffer

 Refill buffer when empty

unread already read Buffer

33

Buffering in Standard I/O
Standard I/O functions use buffered I/O

Buffer flushed to output fd on “\n”, call to fflush or
exit, or return from main.

printf("h");

h e l l o \n . .

printf("e");
printf("l");

printf("l");

printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

34

Standard I/O Buffering in Action

You can see this buffering in action for yourself, using
the always fascinating Linux strace program:

linux> strace ./hello

execve("./hello", ["hello"], [/* ... */]).

...

write(1, "hello\n", 6) = 6

...

exit_group(0) = ?

#include <stdio.h>

int main()

{

 printf("h");

 printf("e");

 printf("l");

 printf("l");

 printf("o");

 printf("\n");

 fflush(stdout);

 exit(0);

}

35

Unix I/O vs. Standard I/O

Standard I/O are implemented using low-level Unix I/O

Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

 Standard I/O
functions

C application program

fopen fdopen

fread fwrite

fscanf fprintf

sscanf sprintf

fgets fputs

fflush fseek

fclose

open read

write lseek

stat close

36

Pros and Cons of Unix I/O

Pros
Unix I/O is the most general and lowest overhead form of I/O

 All other I/O packages are implemented using Unix I/O functions

Unix I/O provides functions for accessing file metadata
Unix I/O functions are async-signal-safe and can be used safely

in signal handlers

Cons
Dealing with short counts is tricky and error prone
Efficient reading of text lines requires some form of buffering,

also tricky and error prone
Both of these issues are addressed by the standard I/O and

RIO packages

37

Pros and Cons of Standard I/O

Pros:
Buffering increases efficiency by decreasing the number

of read and write system calls
Short counts are handled automatically

Cons:
Provides no function for accessing file metadata
Standard I/O functions are not async-signal-safe, and not

appropriate for signal handlers
Standard I/O is not appropriate for input and output on

network sockets
38

Choosing I/O Functions
General rule: use the highest-level I/O functions you can

Many C programmers are able to do all of their work using the
standard I/O functions

 But, be sure to understand the functions you use!

When to use standard I/O
When working with disk or terminal files

When to use raw Unix I/O
 Inside signal handlers, because Unix I/O is async-signal-safe
 In rare cases when you need absolute highest performance

When to use RIO
When you are reading and writing network sockets
 Avoid using standard I/O on sockets

39

Aside: Working with Binary Files

Functions you should never use on binary files
Text-oriented I/O such as fgets, scanf

 Interpret EOL characters

String functions
 strlen, strcpy, strcat

 Interprets byte value 0 (end of string) as special

40

Fun with File Descriptors (1)

 What would this program print for file containing “abcde”?

#include <unistd.h>

int main(int argc, char *argv[])

{

 int fd1, fd2, fd3;

 char c1, c2, c3;

 char *fname = argv[1];

 fd1 = open(fname, O_RDONLY, 0);

 fd2 = open(fname, O_RDONLY, 0);

 fd3 = open(fname, O_RDONLY, 0);

 dup2(fd2, fd3);

 read(fd1, &c1, 1);

 read(fd2, &c2, 1);

 read(fd3, &c3, 1);

 printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);

 return 0;

} ffiles1.c

41

Fun with File Descriptors (2)

 What would this program print for file containing “abcde”?

#include <unistd.h>

int main(int argc, char *argv[])

{

 int fd1;

 int s = getpid() & 0x1;

 char c1, c2;

 char *fname = argv[1];

 fd1 = open(fname, O_RDONLY, 0);

 Read(fd1, &c1, 1);

 if (fork()) { /* Parent */

 sleep(s);

 read(fd1, &c2, 1);

 printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

 } else { /* Child */

 sleep(1-s);

 read(fd1, &c2, 1);

 printf("Child: c1 = %c, c2 = %c\n", c1, c2);

 }

 return 0;

} ffiles2.c

42

Fun with File Descriptors (3)

What would be the contents of the resulting file?

#include <unistd.h>

int main(int argc, char *argv[])

{

 int fd1, fd2, fd3;

 char *fname = argv[1];

 fd1 = open(fname, O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IWUSR);

 write(fd1, "pqrs", 4);

 fd3 = open(fname, O_APPEND|O_WRONLY, 0);

 write(fd3, "jklmn", 5);

 fd2 = dup(fd1); /* Allocates descriptor */

 write(fd2, "wxyz", 4);

 write(fd3, "ef", 2);

 return 0;

} ffiles3.c

43

Accessing Directories
Only recommended

operation on a
directory: read its
entries
dirent structure

contains information
about a directory entry
DIR structure contains

information about
directory while
stepping through its
entries

#include <sys/types.h>

#include <dirent.h>

{

 DIR *directory;

 struct dirent *de;

 ...

 if (!(directory = opendir(dir_name)))

 error("Failed to open directory");

 ...

 while (0 != (de = readdir(directory))) {

 printf("Found file: %s\n", de->d_name);

 }

 ...

 closedir(directory);

}

44

Any Questions?

45

