
Computer Architecture and Operating Systems
Lecture 7: I/O and Files

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Unix I/O Overview

A Linux file is a sequence of m bytes:
B0 , B1 , , Bk , , Bm-1

All I/O devices are represented as files:
/dev/sda2 (/usr disk partition)
/dev/tty2 (terminal)

Even the kernel is represented as a file:
/boot/vmlinuz-3.13.0-55-generic (kernel image)
/proc (kernel data structures)

2

Unix I/O Overview

Elegant mapping of files to devices allows kernel
to export simple interface called Unix I/O:

Opening and closing files

 open()and close()

Reading and writing a file

 read() and write()

Changing the current file position (seek)

 indicates next offset into file to read or write

 lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

3

File Types

Each file has a type indicating its role in the system
Regular file: Contains arbitrary data
Directory: Index for a related group of files

Other file types
Named pipes (FIFOs)
Symbolic links
Character and block devices
Sockets for communicating with a process on another

machine

4

Regular Files
A regular file contains arbitrary data

Applications often distinguish between text files and binary files
 Text files are regular files with only ASCII or Unicode characters
 Binary files are everything else

 e.g., object files, JPEG images

 Kernel does not know the difference!

Text file is sequence of text lines
 Text line is sequence of chars terminated by newline char (‘\n’)

 Newline is 0xa, same as ASCII line feed character (LF)

End of line (EOL) indicators in other systems
 Linux and Mac OS: ‘\n’ (0xa)

 line feed (LF)

Windows and Internet protocols: ‘\r\n’ (0xd 0xa)
 Carriage return (CR) followed by line feed (LF)

5

Directories

Directory consists of an array of links
Each link maps a filename to a file

Each directory contains at least two entries
. (dot) is a link to itself
.. (dot dot) is a link to the parent directory in the

directory hierarchy (next slide)

Commands for manipulating directories
mkdir: create empty directory
ls: view directory contents
rmdir: delete empty directory

6

Directory Hierarchy

 All files are organized as a hierarchy anchored by root directory
named / (slash)

 Kernel maintains current working directory (cwd) for each process

 Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd acos/ andrewt/ include/ bin/

stdio.h vim sys/

unistd.h

hello.c

7

Pathnames
Locations of files in the hierarchy denoted by pathnames
Absolute pathname starts with ‘/’ and denotes path from root

 /home/acos/hello.c

Relative pathname denotes path from current working directory
 ../home/acos/hello.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd acos/ andrewt/ include/ bin/

stdio.h vim sys/

unistd.h

hello.c

cwd: /home/andrewt

8

 /bin – Essential user command binaries (for use by all users)
 /boot – Static files of the boot loader
 /dev – Device files
 /etc – Host-specific system configuration
 /home – User home directories (optional)
 /lib – Essential shared libraries and kernel modules
 /lib<qual> – Alternate format essential shared libraries (optional)
 /media – Mount point for removable media
 /mnt – Mount point for a temporarily mounted filesystem
 /opt – Add-on application software packages
 /root – Home directory for the root user
 /proc – Virtual filesystem providing process and kernel information as files
 /run – Run-time variable data
 /sbin – System binaries
 /srv – Data for services provided by this system
 /sys – Kernel and system information virtual filesystem
 /tmp – Temporary files
 /usr – Secondary hierarchy for read-only user data; contains the majority of (multi-) user tools
 /var – Variable files: files whose content is expected to change during normal operation of the

system 9

Linux Filesystem Hierarchy Standard

Virtual File Systems

Virtual File Systems (VFS) on Unix provide an object-
oriented way of implementing file systems
VFS allows the same system call interface (the API) to

be used for different types of file systems
Separates file-system generic operations from

implementation details
 Implementation can be one of many file systems types, or

network file system
 Implements vnodes which hold inodes or network file details

Then dispatches operation to appropriate file system
implementation routines

10

Virtual File Systems (Cont.)

The API is to the VFS interface, rather than any specific
type of file system

11

Virtual File System Implementation

For example, Linux has four object types:
 inode, file, superblock, dentry

VFS defines set of operations on the objects that must
be implemented
Every object has a pointer to a function table

 Function table has addresses of routines to implement that function
on that object

 For example:
 • int open(...)— Open a file
 • int close(...)— Close an already-open file
 • ssize t read(...)— Read from a file
 • ssize t write(...)— Write to a file
 • int mmap(...)— Memory-map a file

12

5 parts of a Linux Disk
 Boot Block

 Contains boot loader

 Superblock
 The file systems “header”
 Specifies location of file system data structures

 inode area
 Contains descriptors (inodes) for each file on the disk
 All inodes are the same size
 Head of the inode free list is stored in superblock

 File contents area
 Fixed size blocks containing data
 Head of freelist stored in superblock

 Swap area
 Part of disk given to virtual memory system

13

Inode Format
User and group IDs
Protection bits
Access times
File Type

 Directory, normal file, symbolic link, etc

Size
 Length in bytes

Block list
 Location of data blocks in file contents area

Link Count
 Number of directories (hard links) referencing this inode

14

Unix Filesystem (Inodes)

Metadata
 Ownership, permissions
 Access/Modification times
 etc…

Direct blocks:
 Array of consecutive data

blocks
 Block size = 512 bytes
 Inlined in the inode

 Indirect blocks:
• i-node only holds a small number of data block pointers (direct pointers)
• For larger files, i-node points to an indirect block containing 1024 4-byte entries in a 4K block
• Each indirect block entry points to a data block
• Can have multiple levels of indirect blocks for even larger files

 15

Opening Files
Opening a file informs the kernel that you are getting ready to access

that file

 Returns a small identifying integer file descriptor

 fd == -1 indicates that an error occurred

 Each process created by a Linux shell begins life with three open files

associated with a terminal:

 0: standard input (stdin)

 1: standard output (stdout)

 2: standard error (stderr)

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {

 perror("open");

 exit(1);

}

16

Closing Files
Closing a file informs the kernel that you are finished

accessing that file

Closing an already closed file is a recipe for disaster in

threaded programs (more on this later)
Moral: Always check return codes, even for seemingly

benign functions such as close()

int fd; /* file descriptor */

int retval; /* return value */

if ((retval = close(fd)) < 0) {

 perror("close");

 exit(1);

}

17

Reading Files
 Reading a file copies bytes from the current file position to memory,

and then updates file position

 Returns number of bytes read from file fd into buf
 Return type ssize_t is signed integer

 nbytes < 0 indicates that an error occurred

 Short counts (nbytes < sizeof(buf)) are possible and are not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

 perror("read");

 exit(1);

}

18

Writing Files
Writing a file copies bytes from memory to the current file

position, and then updates current file position

Returns number of bytes written from buf to file fd

 nbytes < 0 indicates that an error occurred

 As with reads, short counts are possible and are not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

 perror("write");

 exit(1);

}

19

Simple Unix I/O example

Copying stdin to stdout, one byte at a time

#include <unistd.h>

int main(void)

{

 char c;

 while(read(STDIN_FILENO, &c, 1) != 0)

 write(STDOUT_FILENO, &c, 1);

 exit(0);

}

20

On Short Counts

Short counts can occur in these situations:
Encountering (end-of-file) EOF on reads
Reading text lines from a terminal
Reading and writing network sockets

Short counts never occur in these situations:
Reading from disk files (except for EOF)
Writing to disk files

Best practice is to always allow for short counts.

21

File Metadata
Metadata is data about data, in this case file data
Per-file metadata maintained by kernel
accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */

struct stat {

 dev_t st_dev; /* Device */

 ino_t st_ino; /* inode */

 mode_t st_mode; /* Protection and file type */

 nlink_t st_nlink; /* Number of hard links */

 uid_t st_uid; /* User ID of owner */

 gid_t st_gid; /* Group ID of owner */

 dev_t st_rdev; /* Device type (if inode device) */

 off_t st_size; /* Total size, in bytes */

 unsigned long st_blksize; /* Blocksize for filesystem I/O */

 unsigned long st_blocks; /* Number of blocks allocated */

 time_t st_atime; /* Time of last access */

 time_t st_mtime; /* Time of last modification */

 time_t st_ctime; /* Time of last change */

}; 22

Example of Accessing File Metadata

int main (int argc, char **argv)

{

 struct stat stat;

 char *type, *readok;

 Stat(argv[1], &stat);

 if (S_ISREG(stat.st_mode)) /* Determine file type */

 type = "regular";

 else if (S_ISDIR(stat.st_mode))

 type = "directory";

 else

 type = "other";

 if ((stat.st_mode & S_IRUSR)) /* Check read access */

 readok = "yes";

 else

 readok = "no";

 printf("type: %s, read: %s\n", type, readok);

 exit(0);

}

linux> ./statcheck statcheck.c

type: regular, read: yes

linux> chmod 000 statcheck.c

linux> ./statcheck statcheck.c

type: regular, read: no

linux> ./statcheck ..

type: directory, read: yes

statcheck.c

23

How the Unix Kernel Represents Open Files

Two descriptors referencing two distinct open files.
Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat
struct

24

File Sharing
Two distinct descriptors sharing the same disk file through two

distinct open file table entries
 E.g., Calling open twice with the same filename argument

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File A (disk)

File B (disk)

25

How Processes Share Files: fork

A child process inherits its parent’s open files
 Note: situation unchanged by exec functions (use fcntl to change)

Before fork call:

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

26

How Processes Share Files: fork

A child process inherits its parent’s open files
After fork:
Child’s table same as parent’s, and +1 to each refcnt

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=2

...

File pos

refcnt=2

...

File access
...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

fd 0

fd 1

fd 2

fd 3

fd 4

Parent

Child

27

I/O Redirection

Question: How does a shell implement I/O redirection?
linux> ls > foo.txt

Answer: By calling the dup2(oldfd, newfd) function
 Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

28

I/O Redirection Example

 Step #1: open file to which stdout should be redirected
Happens in child executing shell code, before exec

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

stderr

stdout

stdin File access
...

File size

File type

File A

File pos

refcnt=1

...

File access

...

File size

File type

File B

29

I/O Redirection Example (cont.)

Step #2: call dup2(4,1)
cause fd=1 (stdout) to refer to disk file pointed at by fd=4

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=0

...

File pos

refcnt=2

...

stderr

stdout

stdin File access
...

File size

File type

File access

...

File size

File type

File A

File B

30

Standard I/O Functions

The C standard library (libc.so) contains a
collection of higher-level standard I/O functions
Documented in Appendix B of K&R

Examples of standard I/O functions:
Opening and closing files (fopen and fclose)
Reading and writing bytes (fread and fwrite)
Reading and writing text lines (fgets and fputs)
Formatted reading and writing (fscanf and fprintf)

31

Standard I/O Streams

Standard I/O models open files as streams
Abstraction for a file descriptor and a buffer in memory

C programs begin life with three open streams
(defined in stdio.h)
stdin (standard input)
stdout (standard output)
stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */

extern FILE *stdout; /* standard output (descriptor 1) */

extern FILE *stderr; /* standard error (descriptor 2) */

int main() {

 fprintf(stdout, "Hello, world\n");

} 32

Buffered I/O: Motivation

Applications often read/write one character at a time
getc, putc, ungetc

gets, fgets
 Read line of text one character at a time, stopping at newline

 Implementing as Unix I/O calls expensive
read and write require Unix kernel calls

 > 10,000 clock cycles

Solution: Buffered read
Use Unix read to grab block of bytes
User input functions take one byte at a time from buffer

 Refill buffer when empty

unread already read Buffer

33

Buffering in Standard I/O
Standard I/O functions use buffered I/O

Buffer flushed to output fd on “\n”, call to fflush or
exit, or return from main.

printf("h");

h e l l o \n . .

printf("e");
printf("l");

printf("l");

printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

34

Standard I/O Buffering in Action

You can see this buffering in action for yourself, using
the always fascinating Linux strace program:

linux> strace ./hello

execve("./hello", ["hello"], [/* ... */]).

...

write(1, "hello\n", 6) = 6

...

exit_group(0) = ?

#include <stdio.h>

int main()

{

 printf("h");

 printf("e");

 printf("l");

 printf("l");

 printf("o");

 printf("\n");

 fflush(stdout);

 exit(0);

}

35

Unix I/O vs. Standard I/O

Standard I/O are implemented using low-level Unix I/O

Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

 Standard I/O
functions

C application program

fopen fdopen

fread fwrite

fscanf fprintf

sscanf sprintf

fgets fputs

fflush fseek

fclose

open read

write lseek

stat close

36

Pros and Cons of Unix I/O

Pros
Unix I/O is the most general and lowest overhead form of I/O

 All other I/O packages are implemented using Unix I/O functions

Unix I/O provides functions for accessing file metadata
Unix I/O functions are async-signal-safe and can be used safely

in signal handlers

Cons
Dealing with short counts is tricky and error prone
Efficient reading of text lines requires some form of buffering,

also tricky and error prone
Both of these issues are addressed by the standard I/O and

RIO packages

37

Pros and Cons of Standard I/O

Pros:
Buffering increases efficiency by decreasing the number

of read and write system calls
Short counts are handled automatically

Cons:
Provides no function for accessing file metadata
Standard I/O functions are not async-signal-safe, and not

appropriate for signal handlers
Standard I/O is not appropriate for input and output on

network sockets
38

Choosing I/O Functions
General rule: use the highest-level I/O functions you can

Many C programmers are able to do all of their work using the
standard I/O functions

 But, be sure to understand the functions you use!

When to use standard I/O
When working with disk or terminal files

When to use raw Unix I/O
 Inside signal handlers, because Unix I/O is async-signal-safe
 In rare cases when you need absolute highest performance

When to use RIO
When you are reading and writing network sockets
 Avoid using standard I/O on sockets

39

Aside: Working with Binary Files

Functions you should never use on binary files
Text-oriented I/O such as fgets, scanf

 Interpret EOL characters

String functions
 strlen, strcpy, strcat

 Interprets byte value 0 (end of string) as special

40

Fun with File Descriptors (1)

 What would this program print for file containing “abcde”?

#include <unistd.h>

int main(int argc, char *argv[])

{

 int fd1, fd2, fd3;

 char c1, c2, c3;

 char *fname = argv[1];

 fd1 = open(fname, O_RDONLY, 0);

 fd2 = open(fname, O_RDONLY, 0);

 fd3 = open(fname, O_RDONLY, 0);

 dup2(fd2, fd3);

 read(fd1, &c1, 1);

 read(fd2, &c2, 1);

 read(fd3, &c3, 1);

 printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);

 return 0;

} ffiles1.c

41

Fun with File Descriptors (2)

 What would this program print for file containing “abcde”?

#include <unistd.h>

int main(int argc, char *argv[])

{

 int fd1;

 int s = getpid() & 0x1;

 char c1, c2;

 char *fname = argv[1];

 fd1 = open(fname, O_RDONLY, 0);

 Read(fd1, &c1, 1);

 if (fork()) { /* Parent */

 sleep(s);

 read(fd1, &c2, 1);

 printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

 } else { /* Child */

 sleep(1-s);

 read(fd1, &c2, 1);

 printf("Child: c1 = %c, c2 = %c\n", c1, c2);

 }

 return 0;

} ffiles2.c

42

Fun with File Descriptors (3)

What would be the contents of the resulting file?

#include <unistd.h>

int main(int argc, char *argv[])

{

 int fd1, fd2, fd3;

 char *fname = argv[1];

 fd1 = open(fname, O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IWUSR);

 write(fd1, "pqrs", 4);

 fd3 = open(fname, O_APPEND|O_WRONLY, 0);

 write(fd3, "jklmn", 5);

 fd2 = dup(fd1); /* Allocates descriptor */

 write(fd2, "wxyz", 4);

 write(fd3, "ef", 2);

 return 0;

} ffiles3.c

43

Accessing Directories
Only recommended

operation on a
directory: read its
entries
dirent structure

contains information
about a directory entry
DIR structure contains

information about
directory while
stepping through its
entries

#include <sys/types.h>

#include <dirent.h>

{

 DIR *directory;

 struct dirent *de;

 ...

 if (!(directory = opendir(dir_name)))

 error("Failed to open directory");

 ...

 while (0 != (de = readdir(directory))) {

 printf("Found file: %s\n", de->d_name);

 }

 ...

 closedir(directory);

}

44

Any Questions?

45

