
Computer Architecture and Operating Systems
Lecture 6: Processes and Threads

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Process Concept
An operating system executes a variety of programs:
 Batch system – jobs
 Time-shared systems – user programs or tasks

Textbook uses the terms job and process almost
interchangeably
Process – a program in execution; process execution must

progress in sequential fashion
Multiple parts
 The program code, also called text section
 Current activity including program counter, processor registers
 Stack containing temporary data
 Function parameters, return addresses, local variables

Data section containing global variables
Heap containing memory dynamically allocated during run time

2

Process Concept (Cont.)
Program is passive entity stored on disk (executable

file), process is active
Program becomes process when executable file loaded

into memory

Execution of program started via GUI mouse clicks,
command line entry of its name, etc

One program can be several processes
Consider multiple users executing the same program

 3

4

Process in Memory

Process State

As a process executes, it changes state
new: The process is being created
running: Instructions are being executed
waiting: The process is waiting for some event to occur
ready: The process is waiting to be assigned to a

processor
terminated: The process has finished execution

5

Diagram of Process State

6

Process Control Block (PCB)
Information associated with each process
(also called task control block)
 Process state – running, waiting, etc
 Program counter – location of instruction to next

execute
 CPU registers – contents of all process-centric

registers
 CPU scheduling information- priorities,

scheduling queue pointers
Memory-management information – memory

allocated to the process
 Accounting information – CPU used, clock time

elapsed since start, time limits
 I/O status information – I/O devices allocated to

process, list of open files

7

8

CPU Switch From Process to Process

Threads
So far, process has a single thread of execution

Consider having multiple program counters per
process
Multiple locations can execute at once
Multiple threads of control -> threads

Must then have storage for thread details, multiple
program counters in PCB

See next chapter

9

Process Representation in Linux

Represented by the C structure task_struct
pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */

struct mm_struct *mm; /* address space of this process */

10

Process Scheduling

Maximize CPU use, quickly switch processes onto CPU
for time sharing

Process scheduler selects among available processes
for next execution on CPU

Maintains scheduling queues of processes
 Job queue – set of all processes in the system
Ready queue – set of all processes residing in main

memory, ready and waiting to execute
Device queues – set of processes waiting for an I/O device
Processes migrate among the various queues

11

12

Ready Queue And Various I/O Device Queues

Queueing diagram represents queues, resources,
flows

13

Representation of Process Scheduling

Schedulers
 Short-term scheduler (or CPU scheduler) – selects which process should

be executed next and allocates CPU
 Sometimes the only scheduler in a system
 Short-term scheduler is invoked frequently (milliseconds) (must be

fast)
 Long-term scheduler (or job scheduler) – selects which processes

should be brought into the ready queue
 Long-term scheduler is invoked infrequently (seconds, minutes)

(may be slow)
 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:
 I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts
 CPU-bound process – spends more time doing computations; few

very long CPU bursts
 Long-term scheduler strives for good process mix 14

 Medium-term scheduler can be added if degree of
multiple programming needs to decrease

 Remove process from memory, store on disk, bring
back in from disk to continue execution: swapping

15

Addition of Medium Term Scheduling

Context Switch
When CPU switches to another process, the system

must save the state of the old process and load the
saved state for the new process via a context switch
Context of a process represented in the PCB
Context-switch time is overhead; the system does no

useful work while switching
The more complex the OS and the PCB the longer the

context switch

Time dependent on hardware support
Some hardware provides multiple sets of registers per

CPU multiple contexts loaded at once
16

Operations on Processes

System must provide mechanisms for:
 process creation,
 process termination,
 and so on as detailed next

17

Process Creation

Parent process create children processes, which, in turn
create other processes, forming a tree of processes

Generally, process identified and managed via a process
identifier (pid)

Resource sharing options
Parent and children share all resources
Children share subset of parent’s resources
Parent and child share no resources

Execution options
Parent and children execute concurrently
Parent waits until children terminate

 18

19

A Tree of Processes in Linux
i ni t

pi d = 1

s s hd

pi d = 3028

l ogi n

pi d = 8415
kt hr e add

pi d = 2

s s hd

pi d = 3610
pdf l us h

pi d = 200

khe l pe r

pi d = 6

t c s c h

pi d = 4005
e mac s

pi d = 9204

bas h

pi d = 8416

ps

pi d = 9298

Process Creation (Cont.)
Address space
Child duplicate of parent
Child has a program loaded into it

UNIX examples
fork() system call creates new process
exec() system call used after a fork() to replace the

process’ memory space with a new program

20

C Program Forking Separate Process

21

Creating a Separate Process via Windows API

22

Process Termination

Process executes last statement and then asks the
operating system to delete it using the exit() system
call.
Returns status data from child to parent (via wait())
Process’ resources are deallocated by operating system

Parent may terminate the execution of children processes
using the abort() system call. Some reasons for doing
so:
Child has exceeded allocated resources
Task assigned to child is no longer required
The parent is exiting and the operating systems does not allow

a child to continue if its parent terminates
23

Process Termination

Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children
must also be terminated.
 cascading termination. All children, grandchildren, etc. are

terminated.
 The termination is initiated by the operating system.

The parent process may wait for termination of a child process
by using the wait()system call. The call returns status
information and the pid of the terminated process
 pid = wait(&status);

 If no parent waiting (did not invoke wait()) process is a
zombie
 If parent terminated without invoking wait , process is an

orphan
24

Interprocess Communication
Processes within a system may be independent or

cooperating
Cooperating process can affect or be affected by other

processes, including sharing data
Reasons for cooperating processes:
 Information sharing
 Computation speedup
Modularity
 Convenience

Cooperating processes need interprocess communication
(IPC)
Two models of IPC
 Shared memory
Message passing

25

 (a) Message passing.

(b) Shared memory.

26

Communications Models

Cooperating Processes

Independent process cannot affect or be affected
by the execution of another process
Cooperating process can affect or be affected by

the execution of another process
Advantages of process cooperation
 Information sharing
Computation speed-up
Modularity
Convenience

27

Producer-Consumer Problem

Paradigm for cooperating processes,
producer process produces information that
is consumed by a consumer process
unbounded-buffer places no practical limit on

the size of the buffer
bounded-buffer assumes that there is a fixed

buffer size

28

Interprocess Communication – Shared Memory

An area of memory shared among the processes that
wish to communicate
The communication is under the control of the users

processes not the operating system.
Major issues is to provide mechanism that will allow

the user processes to synchronize their actions when
they access shared memory.
Synchronization is discussed in great details in

Chapter 5.

29

Interprocess Communication – Message Passing

Mechanism for processes to communicate and to
synchronize their actions

Message system – processes communicate with each
other without resorting to shared variables

IPC facility provides two operations:
send(message)
receive(message)

The message size is either fixed or variable

30

User Threads and Kernel Threads

User threads - management done by user-level threads library
Three primary thread libraries:
 POSIX Pthreads
 Windows threads
 Java threads

Kernel threads - Supported by the Kernel
Examples – virtually all general purpose operating systems,

including:
Windows
 Solaris
 Linux
 Tru64 UNIX
Mac OS X

31

Pthreads

May be provided either as user-level or kernel-level

A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

Specification, not implementation

API specifies behavior of the thread library,
implementation is up to development of the library

Common in UNIX operating systems (Solaris, Linux,
Mac OS X)

32

Pthreads Example

33

Pthreads Example (Cont.)

4 .2 0 S ilb e rs c h a tz , G a lv in a n d G a g n e © 2 0 1 3 O p e ra tin g S y s te m C o n c e p ts – 9 th E d it io n

P th re a d s E x a m p le (C o n t.)

34

Pthreads Code for Joining 10 Threads

4 .2 1 S ilb e rs c h a tz , G a lv in a n d G a g n e © 2 0 1 3 O p e ra tin g S y s te m C o n c e p ts – 9 th E d it io n

P th re a d s C o d e fo r J o in in g 1 0 T h re a d s

35

Windows Multithreaded C Program

36

Windows Multithreaded C Program (Cont.)

37

Any Questions?

38

