Faculty (°

Computer
science

Highar Ssbseel of Eranomics

NATIONAL RESEARCH
UNIVERSITY

Computer Architecture and Operating Systems

Lecture 6: Processes and Threads

Andrei Tatarnikov

atatarnikov@hse.ru
@andrewt0301

Process Concept

" An operating system executes a variety of programs:
Batch system —
Time-shared systems — or

" Textbook uses the terms job and process almost
interchangeably

—a program in execution; process execution must
progress in sequential fashion

" Multiple parts
The program code, also called
Current activity including , processor registers
containing temporary data
" Function parameters, return addresses, local variables
containing global variables
containing memory dynamically allocated during run timea

Process Concept (Cont.)

"Program is passive entity stored on disk (
), process is active

Program becomes process when executable file loaded
iInto memory

" Execution of program started via GUI mouse clicks,

command line entry of its name, etc

®"One program can be several processes
Consider multiple users executing the same program

Process in Memory

max

stack

l

heap

data

text

Process State

" As a process executes, it changes
new: The process is being created
running: Instructions are being executed
waiting: The process is waiting for some event to occur

ready: The process is waiting to be assigned to a
processor
terminated: The process has finished execution

Diagram of Process State
o admitted interrupt exit

scheduler dispatch

I/O or event completion I/O or event wait

Process Control Block (PCB)

Information associated with each process
(also called) process state

= Process state — running, waiting, etc process number

" Program counter — location of instruction to next | program counter
execute

" CPU registers — contents of all process-centric

registers registers

" CPU scheduling information- priorities, —
scheduling queue pointers memory limits

" Memory-management information — memory list of open files
allocated to the process

» Accounting information — CPU used, clock time clele

elapsed since start, time limits

= | /O status information — I/O devices allocated to
process, list of open files a

CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

executing J / l

save state into PCB,
: ~idle
reload state from PCB, y
- idle interrupt or system call executing
l \ .
save state into PCB;
: L idle
reload state from PCB,)

executing | _\
Y

®So far, process has a single thread of execution

" Consider having multiple program counters per
process
Multiple locations can execute at once
=" Multiple threads of control ->

" Must then have storage for thread details, multiple
program counters in PCB

=See next chapter

Process Representation in Linux

Represented by the C structure task struct

pid t pid; /* process identifier */

long state; /* state of the process */

unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process s parent */
struct list head children; /* this process s children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* address space of this process */

7N

struct task_struct
process information

R W

struct task_struct
process information

|

!

current

struct task_struct
process information

S RS

(currently executing proccess)

Process Scheduling

" Maximize CPU use, quickly switch processes onto CPU
for time sharing

selects among available processes
for next execution on CPU

" Maintains of processes
— set of all processes in the system

— set of all processes residing in main
memory, ready and waiting to execute

— set of processes waiting for an 1/0 device
Processes migrate among the various queues @

Ready Queue And Various |I/O Device Queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit O

terminal
unit O

queue header

PCB,

PCB,.,

registers

PCBg

head -
tail ~ registers
head -ﬂ_\
tail T
head —+——=
tail +——a PCB,
/////J ’
head 4
tail '\
PCBs
head > — =
/

tail

Representation of Process Scheduling

represents queues, resources,

flows
_____, ready queue CPU g
/O queue *=—— /O request &—
time slice E
expired

child fork a
@7 child .
interrupt wait for an E
OCCUrs interrupt

Schedulers

(or) — selects which process should
be executed next and allocates CPU
Sometimes the only scheduler in a system
Short-term scheduler is invoked frequently (milliseconds) = (must be
fast)

(or) — selects which processes
should be brought into the ready queue
Long-term scheduler is invoked infrequently (seconds, minutes) =
(may be slow)
The long-term scheduler controls the
" Processes can be described as either:
— spends more time doing I/O than computations,
many short CPU bursts
— spends more time doing computations; few
very long CPU bursts
» Long-term scheduler strives for good process mix @

Addition of Medium Term Scheduling

mdu

can be added if degree of
tiple programming needs to decrease

swap in partially executed

swapped-out processes

Remove process from memory, store on disk, bring
nack in from disk to continue execution:

swap out

YYyy

ready queue

@} » end

I/O waiting
gqueues

Context Switch

="\When CPU switches to another process, the system
must of the old process and load the
for the new process via a

of a process represented in the PCB

" Context-switch time is overhead; the system does no
useful work while switching

The more complex the OS and the PCB = the longer the
context switch
"Time dependent on hardware support

Some hardware provides multiple sets of registers per
CPU =» multiple contexts loaded at once

Operations on Processes

= System must provide mechanisms for:
process creation,
process termination,
and so on as detailed next

Process Creation

process create processes, which, in turn

create other processes, forming a of processes
" Generally, process identified and managed via a

(pid)

= Resource sharing options
Parent and children share all resources
Children share subset of parent’ s resources
Parent and child share no resources

= Execution options
Parent and children execute concurrently
Parent waits until children terminate

A Tree of Processes in Linux

init
pid =1

sshd
pid = 3028

login
pid = 8415

kt hreadd
pid = 2

bash khel per pdf I ush _ sshd
pid = 8416 pid =6 pid = 200 pid = 3610
b e _dtc_sc4h005
pid = 9298 pid = 9204 pra =

Process Creation (Cont.)

= Address space
Child duplicate of parent
Child has a program loaded into it

"UNIX examples
fork () system call creates new process

exec () system call used after a fork () to replace the
process memory space with a new program

o o> o

parent resumes

wait

C Program Forking Separate Process

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h:>

int main()

{

pid t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;

}

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL) ;
printf ("Child Complete");

}

return O;

Creating a Separate Process via Windows API

#include <stdio.h>
#include <windows.h>

int main(VDID)

STARTUPINFO si;
PROCESS_INFORMATION pi;

/* allocate memory */
ZeroMemory (&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (&pi, sizeof(pi));

/* create child process */
if (!CreateProcess(NULL, /* use command line */
"C:\\WINDOWS\\system32\\mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /* don’t inherit thread handle */
FALSE, /% disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block */
NULL, /* use parent’s existing directory */
&si,

&pi))

fprintf (stderr, "Create Process Failed");
return -1;
}
/* parent will wait for the child to complete */
WaitForSingleObject (pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread) ;

Process Termination

" Process executes last statement and then asks the
operating system to delete it using the exit () system
call.

Returns status data from child to parent (via wait ())

Process’ resources are deallocated by operating system

" Parent may terminate the execution of children processes
using the abort () system call. Some reasons for doing
SO:

Child has exceeded allocated resources
Task assigned to child is no longer required

The parent is exiting and the operating systems does not allow
a child to continue if its parent terminates @

Process Termination

=" Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children
must also be terminated.

cascading termination. All children, grandchildren, etc. are
terminated.

The termination is initiated by the operating system.

" The parent process may wait for termination of a child process
by using the wait () system call. The call returns status
information and the pid of the terminated process

pid = wait(&status);
" [f no parent waiting (did not invoke wait ()) process is a

" |f parent terminated without invoking wait, processis an

Interprocess Communication

" Processes within a system may be independent or
cooperating

" Cooperating process can affect or be affected by other
processes, including sharing data

" Reasons for cooperating processes:
Information sharing
Computation speedup
Modularity
Convenience

: Eioo?erating processes need

" Two models of IPC

Communications Models

» (a) Message passing.
" (b) Shared memory.

process A process A
orocess B —> shared memory -—
process B
message queue
> Mo | M4 | Mo Mg| ... M =
kernel
kernel

(a) (b)

Cooperating Processes

process cannot affect or be affected
by the execution of another process

process can affect or be affected by
the execution of another process

= Advantages of process cooperation
Information sharing
Computation speed-up
Modularity
Convenience

Producer-Consumer Problem

"Paradigm for cooperating processes,
producer process produces information that
is consumed by a consumer process

places no practical limit on
the size of the buffer

assumes that there is a fixed

buffer size

Interprocess Communication — Shared Memory

" An area of memory shared among the processes that
wish to communicate

" The communication is under the control of the users
processes not the operating system.

" Major issues is to provide mechanism that will allow
the user processes to synchronize their actions when
they access shared memory.

mSynchronization is discussed in great details in
Chapter 5.

Interprocess Communication — Message Passing

" Mechanism for processes to communicate and to
synchronize their actions

" Message system — processes communicate with each
other without resorting to shared variables

" |PC facility provides two operations:
send(message)
receive(message)

"The message size is either fixed or variable

User Threads and Kernel Threads

- management done by user-level threads library

" Three primary thread libraries:
POSIX
Windows threads
Java threads

- Supported by the Kernel
» Examples — virtually all general purpose operating systems,
including:
Windows
Solaris
Linux
Trued UNIX
Mac OS X

=" May be provided either as user-level or kernel-level

= A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

m Specification, not implementation

= AP| specifies behavior of the thread library,
implementation is up to development of the library

" Common in UNIX operating systems (Solaris, Linux,
Mac OS X)

Pthreads Example

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argvl[])

{
pthread t tid; /* the thread identifier */
pthread_attr_t attr; /* set of thread attributes */

if (argc '= 2) {
fprintf (stderr,"usage: a.out <integer value>\n");
return -1;

}
if (atoi(argv[1]) < 0) {

fprintf (stderr,"%d must be >= 0\n",atoi(argv[1i]));
return -1;

}

Pthreads Example (Cont.)

/* get the default attributes */

pthread attr_init (&attr);

/* create the thread */

pthread create(&tid,&attr,runner,argv([(1]);
/* wait for the thread to exit */
pthread_join(tid,NULL) ;

printf ("sum = %d\n",sum);

}

/* The thread will begin control in this function */
void *runner(void *param)

{

int i, upper = atoi(param) ;
sum = 0;
for (i = 1; i <= upper; i++)

sum += 1;

pthread exit (0) ;

Pthreads Code for Joining 10 Threads

#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread_t workers[NUM_THREADS] ;

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers[i], NULL);

Windows Multithreaded C Program

#include <windows.h>
#include <stdio.h>
DWORD Sum; /* data is shared by the thread(s) */

/* the thread runs in this separate function */
DWORD WINAPI Summation(LPVOID Param)

{
DWORD Upper = *(DWORD*)Param;
for (DWORD i = 0; i <= Upper; i++)
Sum += 1i;
return O;
s
int main(int argc, char *argv[])
{

DWORD ThreadId;
HANDLE ThreadHandle;
int Param;

if (argc !'= 2) {
fprintf (stderr,"An integer parameter is required\n");
return —-1;

}

Param = atoi(argv[1]);

if (Param < 0) {
fprintf (stderr,"An integer >= 0 is required\n");
return -1;

}

Windows Multithreaded C Program (Cont.)

/* create the thread */
ThreadHandle = CreateThread(
NULL, /* default security attributes */
0, /* default stack size */
Summation, /* thread function */
&Param, /* parameter to thread function */
0, /* default creation flags */
&ThreadId) ; /* returns the thread identifier */

if (ThreadHandle != NULL) {
/* now wait for the thread to finish *x/

WaitForSingleObject (ThreadHandle, INFINITE) ;

/* close the thread handle *x/
CloseHandle (ThreadHandle) ;

printf ("sum = %d\n",Sum) ;

Any Questions?

. cext

start: addi t1,
addi t2, zero, Ox271

beg tl1, t2, done

Zzexro, 0x18

cycle:
slt ttO, twl1, tZ2
bne t0O0, zZero, if less
nop B
sub tl1l, tl1, tZ2
J cycle
nop
1f less: sub t2, t2, tl1
J cycle

done: add t3, tl, =zZero

