
Computer Architecture and Operating Systems
Lecture 6: Processes and Threads

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Process Concept
An operating system executes a variety of programs:
 Batch system – jobs
 Time-shared systems – user programs or tasks

Textbook uses the terms job and process almost
interchangeably
Process – a program in execution; process execution must

progress in sequential fashion
Multiple parts
 The program code, also called text section
 Current activity including program counter, processor registers
 Stack containing temporary data
 Function parameters, return addresses, local variables

Data section containing global variables
Heap containing memory dynamically allocated during run time

2

Process Concept (Cont.)
Program is passive entity stored on disk (executable

file), process is active
Program becomes process when executable file loaded

into memory

Execution of program started via GUI mouse clicks,
command line entry of its name, etc

One program can be several processes
Consider multiple users executing the same program

 3

4

Process in Memory

Process State

As a process executes, it changes state
new: The process is being created
running: Instructions are being executed
waiting: The process is waiting for some event to occur
ready: The process is waiting to be assigned to a

processor
terminated: The process has finished execution

5

Diagram of Process State

6

Process Control Block (PCB)
Information associated with each process
(also called task control block)
 Process state – running, waiting, etc
 Program counter – location of instruction to next

execute
 CPU registers – contents of all process-centric

registers
 CPU scheduling information- priorities,

scheduling queue pointers
Memory-management information – memory

allocated to the process
 Accounting information – CPU used, clock time

elapsed since start, time limits
 I/O status information – I/O devices allocated to

process, list of open files

7

8

CPU Switch From Process to Process

Threads
So far, process has a single thread of execution

Consider having multiple program counters per
process
Multiple locations can execute at once
Multiple threads of control -> threads

Must then have storage for thread details, multiple
program counters in PCB

See next chapter

9

Process Representation in Linux

Represented by the C structure task_struct
pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */

struct mm_struct *mm; /* address space of this process */

10

Process Scheduling

Maximize CPU use, quickly switch processes onto CPU
for time sharing

Process scheduler selects among available processes
for next execution on CPU

Maintains scheduling queues of processes
 Job queue – set of all processes in the system
Ready queue – set of all processes residing in main

memory, ready and waiting to execute
Device queues – set of processes waiting for an I/O device
Processes migrate among the various queues

11

12

Ready Queue And Various I/O Device Queues

Queueing diagram represents queues, resources,
flows

13

Representation of Process Scheduling

Schedulers
 Short-term scheduler (or CPU scheduler) – selects which process should

be executed next and allocates CPU
 Sometimes the only scheduler in a system
 Short-term scheduler is invoked frequently (milliseconds)  (must be

fast)
 Long-term scheduler (or job scheduler) – selects which processes

should be brought into the ready queue
 Long-term scheduler is invoked infrequently (seconds, minutes) 

(may be slow)
 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:
 I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts
 CPU-bound process – spends more time doing computations; few

very long CPU bursts
 Long-term scheduler strives for good process mix 14

 Medium-term scheduler can be added if degree of
multiple programming needs to decrease

 Remove process from memory, store on disk, bring
back in from disk to continue execution: swapping

15

Addition of Medium Term Scheduling

Context Switch
When CPU switches to another process, the system

must save the state of the old process and load the
saved state for the new process via a context switch
Context of a process represented in the PCB
Context-switch time is overhead; the system does no

useful work while switching
The more complex the OS and the PCB  the longer the

context switch

Time dependent on hardware support
Some hardware provides multiple sets of registers per

CPU  multiple contexts loaded at once
16

Operations on Processes

System must provide mechanisms for:
 process creation,
 process termination,
 and so on as detailed next

17

Process Creation

Parent process create children processes, which, in turn
create other processes, forming a tree of processes

Generally, process identified and managed via a process
identifier (pid)

Resource sharing options
Parent and children share all resources
Children share subset of parent’s resources
Parent and child share no resources

Execution options
Parent and children execute concurrently
Parent waits until children terminate

 18

19

A Tree of Processes in Linux
i ni t

pi d = 1

s s hd

pi d = 3028

l ogi n

pi d = 8415
kt hr e add

pi d = 2

s s hd

pi d = 3610
pdf l us h

pi d = 200

khe l pe r

pi d = 6

t c s c h

pi d = 4005
e mac s

pi d = 9204

bas h

pi d = 8416

ps

pi d = 9298

Process Creation (Cont.)
Address space
Child duplicate of parent
Child has a program loaded into it

UNIX examples
fork() system call creates new process
exec() system call used after a fork() to replace the

process’ memory space with a new program

20

C Program Forking Separate Process

21

Creating a Separate Process via Windows API

22

Process Termination

Process executes last statement and then asks the
operating system to delete it using the exit() system
call.
Returns status data from child to parent (via wait())
Process’ resources are deallocated by operating system

Parent may terminate the execution of children processes
using the abort() system call. Some reasons for doing
so:
Child has exceeded allocated resources
Task assigned to child is no longer required
The parent is exiting and the operating systems does not allow

a child to continue if its parent terminates
23

Process Termination

Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children
must also be terminated.
 cascading termination. All children, grandchildren, etc. are

terminated.
 The termination is initiated by the operating system.

The parent process may wait for termination of a child process
by using the wait()system call. The call returns status
information and the pid of the terminated process
 pid = wait(&status);

 If no parent waiting (did not invoke wait()) process is a
zombie
 If parent terminated without invoking wait , process is an

orphan
24

Interprocess Communication
Processes within a system may be independent or

cooperating
Cooperating process can affect or be affected by other

processes, including sharing data
Reasons for cooperating processes:
 Information sharing
 Computation speedup
Modularity
 Convenience

Cooperating processes need interprocess communication
(IPC)
Two models of IPC
 Shared memory
Message passing

25

 (a) Message passing.

(b) Shared memory.

26

Communications Models

Cooperating Processes

Independent process cannot affect or be affected
by the execution of another process
Cooperating process can affect or be affected by

the execution of another process
Advantages of process cooperation
 Information sharing
Computation speed-up
Modularity
Convenience

27

Producer-Consumer Problem

Paradigm for cooperating processes,
producer process produces information that
is consumed by a consumer process
unbounded-buffer places no practical limit on

the size of the buffer
bounded-buffer assumes that there is a fixed

buffer size

28

Interprocess Communication – Shared Memory

An area of memory shared among the processes that
wish to communicate
The communication is under the control of the users

processes not the operating system.
Major issues is to provide mechanism that will allow

the user processes to synchronize their actions when
they access shared memory.
Synchronization is discussed in great details in

Chapter 5.

29

Interprocess Communication – Message Passing

Mechanism for processes to communicate and to
synchronize their actions

Message system – processes communicate with each
other without resorting to shared variables

IPC facility provides two operations:
send(message)
receive(message)

The message size is either fixed or variable

30

User Threads and Kernel Threads

User threads - management done by user-level threads library
Three primary thread libraries:
 POSIX Pthreads
 Windows threads
 Java threads

Kernel threads - Supported by the Kernel
Examples – virtually all general purpose operating systems,

including:
Windows
 Solaris
 Linux
 Tru64 UNIX
Mac OS X

31

Pthreads

May be provided either as user-level or kernel-level

A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

Specification, not implementation

API specifies behavior of the thread library,
implementation is up to development of the library

Common in UNIX operating systems (Solaris, Linux,
Mac OS X)

32

Pthreads Example

33

Pthreads Example (Cont.)

4 .2 0 S ilb e rs c h a tz , G a lv in a n d G a g n e © 2 0 1 3 O p e ra tin g S y s te m C o n c e p ts – 9 th E d it io n

P th re a d s E x a m p le (C o n t.)

34

Pthreads Code for Joining 10 Threads

4 .2 1 S ilb e rs c h a tz , G a lv in a n d G a g n e © 2 0 1 3 O p e ra tin g S y s te m C o n c e p ts – 9 th E d it io n

P th re a d s C o d e fo r J o in in g 1 0 T h re a d s

35

Windows Multithreaded C Program

36

Windows Multithreaded C Program (Cont.)

37

Any Questions?

38

