
Computer Architecture and Operating Systems
Lecture 2: The C Programming Language

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

2

The C Programming Language
1972-1973: Developed at Bell Labs by Dennis Ritchie to create

utilities for Unix
1973: Unix was re-implemented in C
1978: Brian Kernighan and Dennis Ritchie published The C

Programming Language
1989/1990: ANSI C and ISO C; 1999: C99; 2011: C11; 2017: C17

C is not a “very high level” language, nor a “big” one,
and is not specialized to any particular area of
application. But its absence of restrictions and its
generality make it more convenient and effective for
many tasks than supposedly more powerful
languages.

 Kernighan and Ritchie

 With C we can write programs that allow us to exploit
underlying features of the architecture

3

The Application of C Language

Compiler Creates usable programs from C source code

Typed variables Must declare the kind of data the variable will
contain

Typed functions Must declare the kind of data returned from the
function

Header files (.h) Allows declaring functions and variables in separate
files

Structs Groups of related values

Enums Lists of predefined values

Pointers Aliases to other variables
4

C Concepts

Program’s address space contains
4 regions:
 Stack: local variables, grows

downward

 Heap: space requested via malloc()
and used with pointers; resizes
dynamically, grows upward

 Static Data: global and static
variables, does not grow or shrink

 Code: loaded when program starts,
does not change

5

C Memory Layout

Stack

Heap

Static Data

Code

Reserved
0x 0000 0000

0x FFFF FFFF

OS prevents accesses between stack and heap (via virtual memory)

Declared outside a function:
Static Data

Declared inside a function:
Stack

 main() is a function

 freed when the function returns

Dynamically allocated:
Heap

 i.e. malloc (will be covered shortly)

6

Where Do the Variables Go?

#include <stdio.h>

int varGlobal;

int main() {
 int varLocal;
 int *varDyn =
 malloc(sizeof(int));
}

Each stack frame is a contiguous block of memory holding the
local variables of a single function

A stack frame includes:

 Location of caller function

 Function arguments

 Space for local variables

Stack pointer (SP) tells where lowest (current) stack frame is

When function ends, stack pointer is moved back (but data
remains (garbage!)); frees memory for future stack frames

7

Stack

Last In, First Out (LIFO) data structure

int main() {
 a(0);
 return 1;
}
void a(int m) {
 b(1);
}
void b(int n) {
 c(2);
 d(4);
}
void c(int o) {
 printf(“c”);
}
void d(int p) {
 printf(“d”);
} 8

Stack

main

a

b

d
Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

int *getPtr() {
 int y;
 y = 3;
 return &y;
}

int main () {
 int *stackAddr, content;
 stackAddr = getPtr();
 content = *stackAddr;
 printf("%d", content); /* 3 */
 content = *stackAddr;
 printf("%d", content); /* ? */
} 9

Stack Misuse

Never return pointers to local
variable from functions!

Your compiler will warn you about
this.

Do not ignore such warnings!

printf overwrites stack frames.

Place for variables that persist

Data not subject to comings and goings like function calls

Examples: string literals, global variables

String literal example: char * str = “hi”;

Do not be mistaken with: char str[] = “hi”;
 This will put str on the stack!

Size does not change, but sometimes data can

Notably string literals cannot

10

Static Data

Copy of your code goes there

C code becomes data too!

Does (should) not change

Typically read-only

11

Code

Want persisting memory (like static) even when we do
not know size at compile time?
e.g. input files, user interaction
Stack will not work because stack frames are not

persistent

Dynamically allocated memory goes on the Heap
more permanent than Stack

Need as much space as possible without interfering
with Stack
Start at opposite end and grow towards Stack

12

Dynamic Memory Allocation

 If integer sizes are machine dependent, how do we tell?

Use sizeof() operator
Returns size in number of char-sized units of a variable or data

type name
 Examples: int x; sizeof(x); sizeof(int);

 sizeof(char) is always 1

Can we use sizeof to determine a length of an array?
Generally no but there is an exception:

 int a[61];
 sizeof(a) gets the total number of bytes stored in the array a.
 To get the number of elements, use: sizeof(a) / sizeof(int)
 This ONLY works for arrays defined on the stack IN THE SAME FUNCTION

 It is not recommended to do this. A preferred way is to keep
track of an array size elsewhere. 13

The sizeof Operator

Functions for requesting memory: malloc(), calloc(), and
realloc()

malloc(n)
 Allocates a continuous block of n bytes of uninitialized memory

(contains garbage!)

 Returns a pointer to the beginning of the allocated block; NULL
indicates failed request (check for this!)

 Different blocks not necessarily adjacent

14

Allocating Memory

Any Questions?

15

