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A Golden Age in Microprocessor Design
e Stunning progress in microprocessor design 40 years = 10°x faster!
e Three architectural innovations (~1000x)
« Width: 8->16->32 ->64 bit (~8x)
 Instruction level parallelism:
* 4-10 clock cycles per instruction to 4+ instructions per clock cycle (~10-20x)
* Multicore: 1 processor to 16 cores (~16x)

* Clock rate: 3t0 4000 MHz (~1000x thru technology & architecture)

- Made possible by IC technology:
* Moore’s Law: growth in transistor count (2X every 1.5 years)
« Dennard Scaling: power/transistor shrinks at same rate as transistors are added
(constant per mm? of silicon)

Source: John Hennessy, “The Future of Microprocessors,” Stanford University, March 16, 2017



Changes Converge
» Technology

* End of Dennard scaling: power becomes the key constraint
* Slowdown (retirement) of Moore’s Law: transistors cost

e Architectural

 Limitation and inefficiencies in exploiting instruction level
parallelism end the uniprocessor era in 2004

 Amdahl’s Law and its implications end “easy” multicore era
 Products
« PC/Server = Client/Cloud

Source: John Hennessy, “The Future of Microprocessors,” Stanford University, March 16, 2017



End of Growth of Performance?

40 years of Processor Performance
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What's Left?

Since

. Transistors not getting much better

. Power budget not getting much higher

. Already switched from 1 inefficient
processor/chip to N efficient processors/chip

Only path left is Domain Specific Architectures
. Just do a few tasks, but extremely well



What is Deep Learning?

e Loosely based on
(what little) we know
about the brain

10 mm

OO

Slide from "Large-Scale Deep Learning with TensorFlow for Building Intelligent Systems," by Jeff Dean, ACM Webinar, 7/7/16
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The Artificial Neuron

F(z) = max(0, z)

F: anonlinear
differentiable
function

Slide from "Large-Scale Deep Learning with TensorFlow for Building Intelligent Systems," by Jeff Dean, ACM Webinar, 7/7/16
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Key NN Concepts for Architects

e Training or learning (development)
vs. Inference or prediction (production)
e Batch size
o Problem: DNNs have millions of weights that
take a long time to load from memory (DRAM)
o Solution: Large batch = Amortize weight-fetch time by
inferring (or training) many input examples at a time
e Floating-Point vs. Integer (“Quantization”)
o Training in Floating Point on GPUs popularized DNNs
o Inferring in Integers faster, lower energy, smaller



® 2013: Prepare for success-disaster of new DNN apps
® Scenario with users speaking to phones 3 minutes per day:
If only CPUs, need 2X-3X times whole fleet
® Unlike some hardware targets, DNNs applicable to a wide range of problems, so
can reuse for solutions in speech, vision, language, translation, search ranking, ...

® Custom hardware to reduce the TCO of DNN

inference phase by 10X vs. GPUs
® Must run existing apps developed for CPUs and GPUs

® A very short development cycle
e Started project 2014, running in datacenter 15 months later:
Architecture invention, compiler invention, hardware design, build, test, deploy

® Google CEO Sundar Pichai reveals Tensor Processing Unit
at Google I/0 on May 18, 2016 as “10X performance/Watt”

cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html




e TPU Card to replace a disk
e Upto 4 cards/server
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1. Multilayer Perceptrons

e Each new layer applies nonlinear function F to weighted sum
of all outputs from prior layer (“fully connected”) x_=F(Wx_ )

2. Convolutional Neural Network

e Like MLPs, but same weights used on nearby subsets
of outputs from prior layer

3. Recurrent NN/“Long Short-Term Memory”

e Each new layer a NL function of weighted sums of past state
and prior outputs; same weights used across time steps



Inference Datacenter Workload (95%)

Layers Nonli TPU Ops /| TPU o
Name |[LO(C] ontnear Weights| Weight | Batch 0
function : Deployed
FC |Conv|Vector|Pool| Total Byte Size
MLPO 0.1kl 5 5 RelLU | 20M 200 200 61
MLP1 | 1k | 4 4 | ReLU | 5M | 168 168 °
LSTMO| 1k | 24 34 59 | S1gmoid, | oo\ y | 6y 64
tanh
: ¥ 29%
LSTM1|1.5k| 37 19 56 | OEMOSaa | 96 96
tanh
CNNO | 1k 16 16 | RelLLU M 2888 8 50
CNNI1 | 1k| 4 | 72 13| 8 | ReLU |[100M| 1750 32 °

13




. Add as accelerators to

existing servers
. So connect over |/O bus (“PCle”)
. TPU = matrix accelerator on 1/O bus
. Host server sends it instructions like a
Floating Point Unit

. Unlike GPU that fetches and executes own
instructions



The Matrix Unit: 65,536 (256x256)

8-bit multiply-accumulate units

700 MHz clock rate

Peak: 92T operations/second
o 65536*2*700M

>25X as many MACs vs GPU

>100X as many MACs vs CPU
4 MiB of on-chip Accumulator

memory

24 MiB of on-chip Unified Buffer, .,

(activation memory)

3.5X as much on-chip memory
vs GPU

Two 2133MHz DDR3 DRAM
channels

8 GiB of off-chip weight DRAM
memory

14 GiB/s
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TPU: a Neural Network

| Accelerator Chip

Unified Buffer Matrix Multiply Unit
for Local Activations (256x256x8b=64K MAC)
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5 main (CISC) instructions

Read Host Memory

Write Host Memory

Read Weights

MatrixMultiply/Convolve

Activate (RelLU, Sigmoid, Maxpool, LRN,...)
Average Clock cycles per instruction: >10

4-stage overlapped execution, 1 instruction type / stage

® Execute other instructions while matrix multiplier busy
Complexity in SW: No branches, in-order issue,

SW controlled buffers, SW controlled pipeline synchronization



. Problem: energy/ time for
repeated SRAM accesses
of matrix multiply

. Solution: “Systolic Execution” to
compute data on the fly in buffers
by pipelining control and data

® Relies on data from different directions
arriving at cells in an array at regular
intervals and being combined



Systolic Execution:
Control and Data are pipelined

.

—> Done

Y
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Can now ignore pipelining in matrix
Pretend each 256B input read at once, & they instantly
update 1 location of each of 256 accumulator RAMs.

—] Magic instant
adders™

Control




, Clock TDP  Idle  Memory FeakTOPS/chip

Processor mm
MHz Waftts | Watts GB/sec 8bint.  32b FP

CPU:Haswell | goo 5300 | 445 | 41 51 26 13
(18 core)

GPU: Nvidia

<60 (2/cargy | 561 860 150 25 160 - 2.8
TPU <331* | 700 | 75 28 34 91.8 .

*TPU is less than half die size of the Intel Haswell processor

K80 and TPU in 28 nm process; Haswell fabbed in Intel 22 nm process
These chips and platforms chosen for comparison because widely deployed in Google data centers



GPUs and TPUs added to

CPU server
Chips/ Observed
Processor Server DRAM TDP ldle Busy Watts
Watts @ Watts | .
in datacenter

CPU: Haswell (18 cores) 2 256 GB 504 159 455
NVIDIA K80 (13 cores) 256 GB

(2 die per card; 8 (host) + | 1838 | 357 991

4 cards per server) 12GB x 8

TPU (1 core) 256GB

(1 die per card; 4 (host) + 861 290 384

4 cards per server) 8GB x 4

These chips and platforms chosen for comparison because widely deployed in Google datacenters



2 Limits to performance:

1. Peak Computation

2. Peak Memory Bandwidth
(For apps with large data that
don’t fit in cache)

GFLOP/s = Min(Peak GFLOP/s, Peak GB/s x Al)
64.0

32.0

Arithmetic Intensity (FLOP/byte ™

peak floating point perf.

or reuse) determines which limit -
Weight-reuse = Arithmetic % + Ll oz |
Intensity for DNN roofline s i

0.5

[ P N 1 2 4 8 16
Samuel Williams, Andrew Waterman, and David Patterson. "Roofline: an insightful visual

Arithmetic Intensity: FLOPs/Byte Rati
performance model for multicore architectures."Communications of the ACM 52.4 (2009): 65-76. mhmetc ‘mensry s/Byte Ratio



TeraOps/sec (log scale)
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TeraOps/sec (log scale)
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TeraOps/sec (log scale)
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Why so far below Rooflines? (MLPO)

Type | Batch | 99th% Response | Inf/s (IPS) % Max IPS
CPU 16 7.2 ms 5,482 42%
CPU 64 21.3 ms 13,194 100%
GPU 16 6.7 ms 13,461 37%
GPU 64 8.3 ms 36,465 100%
TPU | 200 7.0 ms 225,000 80%
TPU | 250 10.0 ms 280,000 100%

27




TeraOps/sec (log scale)

Log Rooflines for CPU, GPU, TPU
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Linear Rooflines for CPU, GPU, TPU
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TPU & GPU Relative
Performance to CPU

MLP LSTM CNN |\ Weighted

Type
0 ] 0 ] 0 | | Mean

GPU 2.5 0.3 0.4 1.2 1.6 2.7 1.9

TPU 41.0 | 18.5 3.5 1.2 | 403 | 71.0 | 29.2

Ratio 16.7 | 60.0 8.0 1.0 | 254 | 263 15.3

30




Performance/Watt vs. CPU or GPU

Perf/Watt TPU vs CPU & GPU

B GPU/CPU B TPU/CPU W TPU/GPU
100
~80X incremental perf/W of Haswell CPU
~3(_2%( incremental perf/W of K80 GPU

Total Incremental
Performance/Watt Performance/Watt
(including host CPU) (no host CPU)

31



. Current DRAM
. 2DDR3 2133 = 34 GB/s

. Replace with GDDRS5 like in

K80 = 180 GB/s
« Move Ridge Point from
1400 to 256



Revised TPU Raises Roofline

= Roofline
Improves performance 4X for = Roofline
LSTM1, LSTMO, MLP1, MLPO * LSTMO
" * LSTMO
-
LSTM
T LSTM1
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¥ * MLP1
§L * MLPO
. * MLPO
 CMNMO
* CNN1

100 100r
(R 1000

Weight Reuse (log scale)
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Perf/Watt Original & Revised TPU

B GPU/CPU B TPU/CPU B TPU/GPU W TPU/CPU TPU/GPU

200

~200X incremental perf/W of Haswell CPU
~70X incremental perf/W of K80 GPU

150
100
50
0
Total Performance/Watt Incremental Performance/Watt
(including host CPU) (no host CPLU)

34



Related Work

Two survey articles document that custom NN ASICs go back at least 25 years [len96]|AsiD2]. Far examgle,
CMAPS chips contained a 64 SIMD array of 16.bit by S-bit mubtspliers, and several CNAPS chips could be
connected iogether with o sequencer [Ham90], The Synapse] system was hased on a custom systilic
multiplysaccurmulate chip called the MAs 16, which performed sixieen |6sbst multiplics at a time [Ram@1], The
system concatenated several MA=16 chips tagether and had customn hardware 1o do activation functions.

Twenty-five SPERT-11 workstatirs, sccelerated by the TO custam ASIC, were deployed starting m 1995 ko do
both NN training and inference for speech recognatson [ A8 . The 40:Mhe TO addid vector instructiors o the
MIPS instruction st archstecture, The eighi-lne vector unit ceald produce up o sixteen 32«bit arithmetic results per
clock cycle based an B-bit and 16-bat mputs, making st 25 tsmes faster at inference and 20 times Faster at traiming
than a SPARC-20 workstatson. They found that 16 bits were insufficient for training, so they used two. 16-bit words
instead, which doubled training time. To overcome that dranwback, they introduced “bunches™ (halches) of 32 w0
1000 data sets o reduce time spent updating weights, which made it fxster than trainang with one ward but no
hatches.

The mare recent Dian®ao family of NN architectures mmimizes memory accesses both en the chip and io
external DRAM by having efficsent archstectural support fior the memory access patlerrs that appear in NN
applications [Keul6] |Chel6a]. Al use 16-bat anteger operations snd =1l designs dove down b byout, but no chips
were fabncated. The original DianN a0 wses an srray of 64 16-hat integer multiply-sccumulste unsts with 34 KB of
anmchip memory and is estimated to be 3 m* (65 nm), 1o run 21 1 GHz, and to consume 0.5W [Chelda]. Most of
this energy went i DRAM acoesses for weights, s one successor DaDsnNae (“big computer™) inchudes eDRAM
10 keep 36 MiBl of wesghts oa chip [Chel 4b]. The gral wes to have encugh memory in a multichip system to avoid
external DRAM accesses. The follow-on PuDsnMNao (“general computer™) e aimed ab more tradstsors] machine
Iearnang algorithms beyond TNMs, such as suppoct vector machines [Lial 5]. Another offshoot & ShiDianNao
{“vision computer”) asmed at CNNz, which avesds IRAM accesses by connecting the accelerator directly 10 the
sensor [Dul 5],

n-cmmm Engine is also focused an CNNs for image [ad] 3]. This d deploys 63 10=tit

I units and it Tensilica processor estimated to run at BO0 Mz in 45 nm. [Lis
projected 1o be BX s 15X more energy-area efficien than an STMID processor, and within 2X to 3X of cusiom
hardware designed just for = specific kernel,

The Fathom benchmark paper seemingly reports results contradichory 10 curs, with the GPU runnang infierence
much fixster than the CPU [Adal 6], Hirwever, their CPLI and GPL ane not server-class, the CPL has anby four cares,
the appheations do not use the CPL"s AVY and there 15 F cutaff {see Table 4) [Brols ).

Catapult i3 the mest widely deployed example of vsing reconfigurability to suppart DNNs, which many have
proposedd [Far(9|[Chal 0)[Farl 1][Peel 2| Cav] 5][Zhal 5| They chose FPGAs over GPUS 1o reduce power as well s
the risk that latency-sensitive applications wouldn’t map well o GGPUs. FPGAS can sl be respurposed, such as far
search, and netwark inter; ds [Put15]. The TPU progect sctully begsn with FPOAS, but we
ahandoned them when we saw that the FPGAs of that lime were not compelstive i performance compared 1o te
GPUS of thet time, =nd the TPU could be much lower power than GPLIs while being as fast or Easter, giving &
potentially sipnificant benefits over bath of FPGAs and GPUs.

Although first published in 2014 [Put]4], Catapult is 3 TPU conternparary since i dephayed 28.nm Stratsx V
FPGAS intn datacenters concurrently with the TPU in 2015, Catapult has a 200 Mikz clock, 3,926 18t MACs, 5
MiB of anechip memey, 11 GBfs memery bandwidth, and wses 25 Walts, The TPU bas a 700 MHz chock, 65,536
Bobat MACs, 18 Mill, 34 GBS, and typically uses 30 Wabis. A revised version of Catapult uses newer FPGAs and
waas dleplioved at barger scale m 2006 [Can 16].

Catapult V1 runs CNNs—using a sysiolic matrx multiplier—2, 3X as Bt as a 2.1 GiHz, I6score, dualsacket
server [Ovtl5a]. Using the next generation of FPGAS {14snm Arria 10) of Catspult ¥2, performance mizht go up to
7, and perhaps even 17X with more careful Aoceplanming [Ovt15h]. Abthough it's apples versus oranges, 3 carrent
TPU die rurs sis CNNs 40X to 70X versus a somewhat faster server (Tables 2 and 6). Perhaps the bigges difference
is that o gel the hest performance the user mast wrile Jong programs in the low-level hardwanesdesignelanguzge
Verilog [Met16 ][ 16] versus writing short programs i the highelevel TersorFlow framework, That i,
reprogrammahility comes from software for the TPL rather than from firmware for the FPGA.

Recent research, which appeared afler the TPU was deploved, acoelerates DNNs by optimizing the cases when
echelies and dida ars very saall or m, Chur Hight cheskolis prvesinddi dmch Gplimbxativars in i TPUT, bt wee sirer the
same epportunsy 10 cur studies, The Efficient Inference Engire 1 hased on a first pass that reduces the mumiber of
weights by shout a Eactor of 10 [Han1 5] as a separate step by filtering out very small values and then wses Hiffman
enceding b shrink the dst even further o improve inference performance [Hanl 6], Crvlutin | AB16] avoids
maltiplicatsans when an activation input = zero—which it is 44% of the time, presumably m part due 1o RelL]
nomlinear function that tramsfiorms negative values 4o zere—io mprove performance by an average 1.4 mes.

Eyeriss is a novel, lowspower dataflow snchitecture that takes advantage of zeros by runslength encoding data to
reduce the memory footprint and sives power by avaiding computations when an input s zero [Che 16a). Using
Eyeriss terminalogy, a TPU convalubioes] laver maps C 2nd M to the rows and columns of the matrix uni, taking
HWN cycles to perform one pass, With high C/M, 2 bakes RS pesses (o process the kwver; for low C/M, 2 number of
technigues reduce passes and improve utilization, {Mane can be foand in the online references
|Rasl Sa][Rosl 5bj|lt|:sl5c][R.usl S[Thol ¥ oul 5]).

Minerva is i comd and crcuit disciplines 1o reduce power by
X i part by pruning actvation Mawnh sl values and in et by quantizing the data [Real6]. [Gup]5] looks at
16t fisedepaint arithmetic for traming imstead of Inrlnd':n:m:r Others leverage the bower precssion of TINN
calculatsons by utilizing arslog cirouits during the 2y and e |LiK16]
|Shalfi]. By tsloring an imstruction set bo DINNs, Cambricon n:dm:ncmk sire |Liula). Revent work looked at

e L T i v b Bete mr G AR R SR srmd &1

Related Work

‘Comparing the TPU to some of these architecture:
e [Chelda] DMAs data from DRAM to input and weight buffers. They are read by the 3-stage pipelined NFU
that performs . adds, and non-li functions; the results go to the output buffer, and then to
DRAM. The NFU has no storage and isn’t systolic.
® [Gupl5] appears to stream both matrix inputs while storing partial sums in the systolic array: the TPU
stores the weight matrix tile while streaming the other input and the pre-activation partial sums. The TPU
doesn’t support stochastic rounding.
® [Zhal$] is built out of computation units equivalent to a 4x2 version of the TPU malrix unit. In an ASIC,
the wiring cost of the ¢rossbars that connect input and output buffers to these compute engines would be
significant. We are surprised that we didn’t see architectural support for additional reductions to combine
results from compute engines in [Zhal3).
All three of [Gup]5][Chel4a)[Zhal5] store activations in DRAM during computation; the TPU’s Unified Buffer is
sized so Lhalnc DRAM spilling or reloading happens during normal operation.
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TPU succeeded because of

. Large matrix multiply unit

. Substantial software-controlled on-chip memory

. Run whole inference models to reduce host CPU

. Single-threaded, deterministic execution model
good match to 99th-percentile response time

. Enough flexibility to match NNs of 2017 vs. 2013

. Omission of GP features = small, low power die

. Use of 8-bit integers in the quantized apps

. Apps in TensorFlow, so easy to port at speed



. Inference prefers latency over throughput

. K80 GPU relatively poor at inference (vs. training)
. Small redesign improves TPU at low cost

. 15-month design & live on I/O bus yet TPU
15X-30X faster Haswell CPU, K80 GPU (inference),

<% die size, 5 Watts
. 65,536 (8-bit) TPU MACs cheaper, lower energy, &
faster 576 (32-bit) CPU MACs, 2496 GPU (32-bit) MACs

. 10X difference in computer products are rare



Questions?

*4/5/17 Google published a blog on the TPU. A 17-page technical paper with same title will
be on arXiv.org. (Paper will also appear at the International Symposium on Computer

Architecture on June 26, 2017.)

https://cloudplatform.googleblog.com/2017/04/quantifying-the-performance-of-the-TPU-our-first-machine-learning-chip.html
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