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• Stunning progress in microprocessor design 40 years ≈ 106x faster!
• Three architectural innovations (~1000x)
• Width: 8->16->32 ->64 bit (~8x)
• Instruction level parallelism: 
• 4-10 clock cycles per instruction to 4+ instructions per clock cycle (~10-20x)

• Multicore: 1 processor to 16 cores (~16x)

• Clock rate: 3 to 4000 MHz (~1000x thru technology & architecture)

• Made possible by IC technology:

• Moore’s Law: growth in transistor count (2X every 1.5 years)
• Dennard Scaling: power/transistor shrinks at same rate as transistors are added

(constant per mm2 of silicon)

A Golden Age in Microprocessor Design

Source:  John Hennessy, “The Future of Microprocessors,” Stanford University, March 16, 2017 2
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Changes Converge
• Technology

• End of Dennard scaling: power becomes the key constraint
• Slowdown (retirement) of Moore’s Law: transistors cost 

• Architectural
• Limitation and inefficiencies in exploiting instruction level 

parallelism end the uniprocessor era in 2004
• Amdahl’s Law and its implications end “easy” multicore era

• Products
• PC/Server ⇒ Client/Cloud

Source:  John Hennessy, “The Future of Microprocessors,” Stanford University, March 16, 2017 3



End of 
Moore’s

Law
⇒

2X / 
20 yrs
(3%/yr)

RISC
2X / 1.5 yrs

(52%/yr)

CISC
2X / 3.5 yrs

(22%/yr)

End of 
Dennard
Scaling

⇒
Multicore
2X / 3.5 

yrs
(23%/yr)

Am-
dahl’s
Law
⇒

2X / 
6 yrs

(12%/yr)

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018
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“cat”

● Loosely based on 
(what little) we know 
about the brain

What is Deep Learning?

Slide from "Large-Scale Deep Learning with TensorFlow for Building Intelligent Systems," by Jeff Dean, ACM Webinar, 7/7/16 6



The Artificial Neuron

x1 x2 xn...

w1 w2 wn...

y

F: a nonlinear 
differentiable

function

Slide from "Large-Scale Deep Learning with TensorFlow for Building Intelligent Systems," by Jeff Dean, ACM Webinar, 7/7/16 7



ConvNets

Slide from "Large-Scale Deep Learning with TensorFlow for Building Intelligent Systems," by Jeff Dean, ACM Webinar, 7/7/16 8



Key NN Concepts for Architects
● Training or learning (development) 

vs. Inference or prediction (production)
● Batch size

○ Problem: DNNs have millions of weights that 
take a long time to load from memory (DRAM)

○ Solution: Large batch ⇒ Amortize weight-fetch time by 
inferring (or training) many input examples at a time

● Floating-Point vs. Integer (“Quantization”)
○ Training in Floating Point on GPUs popularized DNNs
○ Inferring in Integers faster, lower energy, smaller

9
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Name LOC
Layers

Nonlinear 
function Weights

TPU Ops / 
Weight 

Byte

TPU 
Batch 
Size

% 
Deployed

FC Conv Vector Pool Total
MLP0 0.1k 5 5 ReLU 20M 200 200 61%
MLP1 1k 4 4 ReLU 5M 168 168

LSTM0 1k 24 34 58 sigmoid, 
tanh 52M 64 64

29%
LSTM1 1.5k 37 19 56 sigmoid, 

tanh 34M 96 96

CNN0 1k 16 16 ReLU 8M 2888 8 5%
CNN1 1k 4 72 13 89 ReLU 100M 1750 32
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● 4 MiB of on-chip Accumulator 
memory

● The Matrix Unit: 65,536 (256x256) 
8-bit multiply-accumulate units

● 700 MHz clock rate
● Peak: 92T operations/second 

○ 65,536 * 2 * 700M
● >25X as many MACs vs GPU
● >100X as many MACs vs CPU

● 24 MiB of on-chip Unified Buffer 
(activation memory)

● 3.5X as much on-chip memory 
vs GPU

● Two 2133MHz DDR3 DRAM 
channels

● 8 GiB of off-chip weight DRAM 
memory





●  
Read_Host_Memory
Write_Host_Memory
Read_Weights
MatrixMultiply/Convolve
Activate(ReLU,Sigmoid,Maxpool,LRN,…)

●
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Systolic Execution:
Control and Data are pipelined



. 

. 

.

+ + + +

. . .

Can now ignore pipelining in matrix
Pretend each 256B input read at once, & they instantly 
update 1 location of each of 256 accumulator RAMs.

Control

Magic instant 
adders™



Processor mm2 Clock 
MHz

TDP 
Watts

Idle 
Watts

Memory 
GB/sec

Peak TOPS/chip

8b int. 32b FP

CPU: Haswell 
(18 core) 

662 2300 145 41 51 2.6 1.3

GPU: Nvidia 
K80 (2 / card) 561 560 150 25 160 -- 2.8

TPU <331* 700 75 28 34 91.8 --

K80 and TPU in 28 nm process; Haswell fabbed in Intel 22 nm process
These chips and platforms chosen for comparison because widely deployed in Google data centers

*TPU is less than half die size of the Intel Haswell processor



Processor
Chips/
Server DRAM TDP 

Watts
Idle 

Watts

Observed 
Busy Watts 

in datacenter

CPU: Haswell (18 cores) 2 256 GB 504 159 455

NVIDIA K80 (13 cores)
(2 die per card;
4 cards per server)

8
256 GB 
(host) + 

12GB x 8
1838 357 991

TPU (1 core) 
(1 die per card; 
4 cards per server)

4
256GB 
(host) + 
8GB x 4

861 290 384

These chips and platforms chosen for comparison because widely deployed in Google datacenters



Samuel Williams, Andrew Waterman, and David Patterson. "Roofline: an insightful visual 
performance model for multicore architectures."Communications of the ACM 52.4 (2009): 65-76.









Type Batch 99th% Response  Inf/s (IPS) % Max IPS
CPU 16 7.2 ms 5,482 42%
CPU 64 21.3 ms 13,194 100%
GPU 16 6.7 ms 13,461 37%
GPU 64 8.3 ms 36,465 100%
TPU 200 7.0 ms 225,000 80%
TPU 250 10.0 ms 280,000 100%



Star = TPU
Triangle = GPU
Circle = CPU



Star = TPU
Triangle = GPU
Circle = CPU



Type
MLP LSTM CNN Weighted 

Mean0 1 0 1 0 1

GPU 2.5 0.3 0.4 1.2 1.6 2.7 1.9

TPU 41.0 18.5 3.5 1.2 40.3 71.0 29.2

Ratio 16.7 60.0 8.0 1.0 25.4 26.3 15.3



~80X incremental perf/W of Haswell CPU
~30X incremental perf/W of K80 GPU
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Improves performance 4X for 
LSTM1, LSTM0, MLP1, MLP0 



~200X incremental perf/W of Haswell CPU
~70X incremental perf/W of K80 GPU
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