
Computer Architecture and Operating Systems
Lecture 16: Domain-specific architectures.

Tensor Processing Unit.

Alexey Kanakhin

akanakhin@hse.ru

2

Conventional 5-stages pipeline

▪Modern performance tuning techniques:
▪Deep memory hierarchy
▪Wide SIMD units
▪Deep pipelines
▪Branch prediction
▪Out-of-order execution
▪Speculative prefetching
▪Multithreading
▪Multiprocessing

▪Further improvement:
▪Domain-specific architectures

3

Possible improvements

▪Use dedicated memories to minimise data movement

▪Invest resources into more arithmetic units or bigger
memories

▪Use the easiest form of parallelism that matches the
domain

▪Reduce data size and type to the simplest needed for
the domain

▪Use a domain-specific programming language

4

Guidelines for DSAs

▪Batches
▪Reuse weights once fetched from memory across multiple inputs
▪ Increases operational intensity

▪Quantisation
▪Use 8- or 16-bit fixed point or integer numbers

▪Operations
▪Matrix-vector multiply
▪Matrix-matrix multiply
▪Stencil
▪ReLU
▪Sigmoid
▪Hyperbolic tangent 5

DNN Summary

6

Matrix-Matrix multiplication

▪Different from pipelining
▪Nonlinear array structure,

multi-direction data flow,
each PE may have (small)
local instruction and data
memory

▪Different from SIMD
▪each PE may do something

different
7

Systolic array (2D pipeline)

8

Computation example
• Processing units arranged in a 2D grid

• Each PU accumulates one element of the product

9

Computation example
• Processing units arranged in a 2D grid

• Each PU accumulates one element of the product

10

Computation example
• Processing units arranged in a 2D grid

• Each PU accumulates one element of the product

11

Computation example
• Processing units arranged in a 2D grid

• Each PU accumulates one element of the product

12

Computation example
• Processing units arranged in a 2D grid

• Each PU accumulates one element of the product

13

Computation example
• Processing units arranged in a 2D grid

• Each PU accumulates one element of the product

14

Computation example
• Processing units arranged in a 2D grid

• Each PU accumulates one element of the product

15

Computation example
• Processing units arranged in a 2D grid

• Each PU accumulates one element of the product

▪Google’s DNN ASIC
▪256 x 256 8-bit matrix multiply unit
▪Large software-managed scratchpad
▪Coprocessor on the PCIe bus

16

Tensor Processing Unit

▪Read_Host_Memory
▪ Reads memory from the CPU memory into the unified buffer

▪Read_Weights
▪ Reads weights from the Weight Memory into the Weight FIFO as input to the

Matrix Unit
▪MatrixMatrixMultiply/Convolve

▪ Perform a matrix-matrix multiply, a vector-matrix multiply, an element-wise matrix
multiply, an element-wise vector multiply, or a convolution from the Unified Buffer
into the accumulators
▪ takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and

produces a B*256 output, taking B pipelined cycles to complete
▪Activate

▪ Computes activation function
▪Write_Host_Memory

▪Writes data from unified buffer into host memory 17

TPU ISA

18

Tensor Processing Unit

19

Tensor Processing Unit

▪Use dedicated memories
▪24 MiB dedicated buffer, 4 MiB accumulator buffers

▪Invest resources in arithmetic units and dedicated memories
▪60% of the memory and 250X the arithmetic units of a server-class CPU

▪Use the easiest form of parallelism that matches the domain
▪Exploits 2D SIMD parallelism

▪Reduce the data size and type needed for the domain
▪Primarily uses 8-bit integers

▪Use a domain-specific programming language
▪Uses TensorFlow

20

The TPU and the Guidelines

21

FPGA vs ASIC

22

FPGA vs ASIC

23

Microsoft Catapult
■ Needed to be general purpose and

power efficient
■ Uses FPGA PCIe board with

dedicated 20 Gbps network in 6
x 8 torus

■ Each of the 48 servers in half the
rack has a Catapult board

■ Limited to 25 watts

■ 32 MiB Flash memory

■ Two banks of DDR3-1600 (11
GB/s) and 8 GiB DRAM

■ FPGA (unconfigured) has 3962
18-bit ALUs and 5 MiB of on-chip
memory

■ Programmed in Verilog RTL

■ Shell is 23% of the FPGA

24

Microsoft Catapult: CNN configuration

▪Feature extraction (1 FPGA)
▪Extracts 4500 features for every

document-query pair, e.g. frequency in
which the query appears in the page
▪Systolic array of FSMs

▪Free-form expressions (2 FPGAs)
▪Calculates feature combinations

▪Machine-learned Scoring (1 FPGA for
compression, 3 FPGAs calculate score)
▪Uses results of previous two stages to

calculate floating-point score

25

Microsoft Catapult: Search Ranking Configuration

26

FSM Example

▪Use dedicated memories
▪5 MiB dedicated memory

▪Invest resources in arithmetic units and dedicated memories
▪3926 ALUs

▪Use the easiest form of parallelism that matches the domain
▪2D SIMD for CNN, MISD parallelism for search scoring

▪Reduce the data size and type needed for the domain
▪Uses mixture of 8-bit integers and 64-bit floating-point

▪Use a domain-specific programming language
▪Uses Verilog RTL; Microsoft did not follow this guideline

27

Microsoft Catapult and Guidelines

 .text
__start: addi t1, zero, 0x18
 addi t2, zero, 0x21
cycle: beq t1, t2, done
 slt t0, t1, t2
 bne t0, zero, if_less
 nop
 sub t1, t1, t2
 j cycle
 nop
if_less: sub t2, t2, t1
 j cycle
done: add t3, t1, zero

Any Questions?

28

