
Computer Architecture and Operating Systems 
Lecture 16: Domain-specific architectures. 

Tensor Processing Unit.

Alexey Kanakhin

akanakhin@hse.ru




2

Conventional 5-stages pipeline



▪Modern performance tuning techniques:

▪Deep memory hierarchy

▪Wide SIMD units

▪Deep pipelines

▪Branch prediction

▪Out-of-order execution

▪Speculative prefetching

▪Multithreading

▪Multiprocessing


▪Further improvement:

▪Domain-specific architectures

3

Possible improvements



▪Use dedicated memories to minimise data movement


▪Invest resources into more arithmetic units or bigger 
memories


▪Use the easiest form of parallelism that matches the 
domain


▪Reduce data size and type to the simplest needed for 
the domain


▪Use a domain-specific programming language

4

Guidelines for DSAs



▪Batches

▪Reuse weights once fetched from memory across multiple inputs

▪ Increases operational intensity


▪Quantisation

▪Use 8- or 16-bit fixed point or integer numbers


▪Operations

▪Matrix-vector multiply

▪Matrix-matrix multiply

▪Stencil

▪ReLU

▪Sigmoid

▪Hyperbolic tangent 5

DNN Summary



6

Matrix-Matrix multiplication



▪Different from pipelining

▪Nonlinear array structure, 

multi-direction data flow, 
each PE may have (small) 
local instruction and data 
memory 


▪Different from SIMD

▪each PE may do something 

different
7

Systolic array (2D pipeline)



8

Computation example
• Processing units arranged in a 2D grid


• Each PU accumulates one element of the product



9

Computation example
• Processing units arranged in a 2D grid


• Each PU accumulates one element of the product



10

Computation example
• Processing units arranged in a 2D grid


• Each PU accumulates one element of the product



11

Computation example
• Processing units arranged in a 2D grid


• Each PU accumulates one element of the product



12

Computation example
• Processing units arranged in a 2D grid


• Each PU accumulates one element of the product



13

Computation example
• Processing units arranged in a 2D grid


• Each PU accumulates one element of the product



14

Computation example
• Processing units arranged in a 2D grid


• Each PU accumulates one element of the product



15

Computation example
• Processing units arranged in a 2D grid


• Each PU accumulates one element of the product



▪Google’s DNN ASIC

▪256 x 256 8-bit matrix multiply unit

▪Large software-managed scratchpad

▪Coprocessor on the PCIe bus

16

Tensor Processing Unit



▪Read_Host_Memory

▪ Reads memory from the CPU memory into the unified buffer


▪Read_Weights

▪ Reads weights from the Weight Memory into the Weight FIFO as input to the 

Matrix Unit

▪MatrixMatrixMultiply/Convolve


▪ Perform a matrix-matrix multiply, a vector-matrix multiply, an element-wise matrix 
multiply, an element-wise vector multiply, or a convolution from the Unified Buffer 
into the accumulators

▪ takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and 

produces a B*256 output, taking B pipelined cycles to complete

▪Activate


▪ Computes activation function

▪Write_Host_Memory


▪Writes data from unified buffer into host memory 17

TPU ISA



18

Tensor Processing Unit



19

Tensor Processing Unit



▪Use dedicated memories

▪24 MiB dedicated buffer, 4 MiB accumulator buffers


▪Invest resources in arithmetic units and dedicated memories

▪60% of the memory and 250X the arithmetic units of a server-class CPU


▪Use the easiest form of parallelism that matches the domain

▪Exploits 2D SIMD parallelism


▪Reduce the data size and type needed for the domain

▪Primarily uses 8-bit integers


▪Use a domain-specific programming language

▪Uses TensorFlow

20

The TPU and the Guidelines



21

FPGA vs ASIC



22

FPGA vs ASIC



23

Microsoft Catapult
■ Needed to be general purpose and 

power efficient

■ Uses FPGA PCIe board with 

dedicated 20 Gbps network in 6 
x 8 torus


■ Each of the 48 servers in half the 
rack has a Catapult board


■ Limited to 25 watts


■ 32 MiB Flash memory


■ Two banks of DDR3-1600 (11 
GB/s) and 8 GiB DRAM


■ FPGA (unconfigured) has 3962 
18-bit ALUs and 5 MiB of on-chip 
memory


■ Programmed in Verilog RTL


■ Shell is 23% of the FPGA



24

Microsoft Catapult: CNN configuration



▪Feature extraction (1 FPGA)

▪Extracts 4500 features for every 

document-query pair, e.g. frequency in 
which the query appears in the page

▪Systolic array of FSMs


▪Free-form expressions (2 FPGAs)

▪Calculates feature combinations


▪Machine-learned Scoring (1 FPGA for 
compression, 3 FPGAs calculate score)

▪Uses results of previous two stages to 

calculate floating-point score

25

Microsoft Catapult: Search Ranking Configuration



26

FSM Example



▪Use dedicated memories

▪5 MiB dedicated memory


▪Invest resources in arithmetic units and dedicated memories

▪3926 ALUs


▪Use the easiest form of parallelism that matches the domain

▪2D SIMD for CNN, MISD parallelism for search scoring


▪Reduce the data size and type needed for the domain

▪Uses mixture of 8-bit integers and 64-bit floating-point


▪Use a domain-specific programming language

▪Uses Verilog RTL; Microsoft did not follow this guideline

27

Microsoft Catapult and Guidelines



	 	 

	 	 .text

__start:	 addi t1, zero, 0x18

	 	 addi t2, zero, 0x21

cycle:	 beq t1, t2, done

	 	 slt t0, t1, t2

	 	 bne t0, zero, if_less

	 	 nop

	 	 sub t1, t1, t2

	 	 j cycle

	 	 nop

if_less:	 sub t2, t2, t1

	 	 j cycle

done:	 	 add t3, t1, zero

Any Questions?

28


