Faculty (©

Com uter
scnence

Highar Scbeal of Franomic

NATIONAL RESEARCH
UNIVERSITY

Computer Architecture and Operating Systems

Lecture 15: Optimizations

Andrei Tatarnikov

atatarnikov@hse.ru
@andrewt0301

Work

The work of a program (on a given input) is
the sum total of all the operations executed by the
program.

Fa

Optimizing Work

= Algorithm design can produce dramatic reductions in the amount of
work it takes to solve a problem, as when a O(n Ig n)-time sort replaces
a O(n?)-time sort.

" However, reducing the work of a program does not automatically
reduce its running time due to complex nature of computer hardware:

instruction-level parallelism (ILP)
caching

vectorization

speculation and branch prediction

etc.
=" Nevertheless, reducing the work serves as a good heuristic for reducing
overall running time e

Performance Assessment

" Analytical assessment (asymptotic notation) is not
enough. Implementation of an algorithmically-
efficient algorithm can be slow because of inefficient
use of hardware. Constant factors matter!

" Create tests with benchmarks and use profiling tools
to find bottlenecks and compare algorithms.

Recommendations

= Data structures " Logic
Packing and encoding Constant folding and propagation
Augmentation Common-subexpression
Precomputation elimination
Compile-time initialization Algebraic identities
Caching

Short-circuiting

Lazy gvaluatlon Ordering tests
Sparsity :
« L ooDs Creating a fast path
ps Combining tests
Hoisting ,
Loop unrolling Inlining
Loop fusion Tail-recursion elimination
Eliminating wasted iterations Coarsening recursion

"The goal of hoisting — also called loop-invariant code
motion — is to avoid recomputing loop-invariant code
each time through the body of a loop.

for (int i = 0; i < 100; i++) {
a[i] = x + y;

}

int t = x + y;

for (int i = 9; 1 < 100; i++) {
a[i] = t;

}

Loop Unrolling

" Loop unrolling attempts to save work by combining
several consecutive iterations of a loop into a single
iteration, thereby reducing the total number of
iterations of the loop and, consequently, the number

of times that the instructions that control the loop
must be executed.

Full loop unrolling: All iterations are unrolled.

Partial loop unrolling: Several, but not all, of the
iterations are unrolled.

Full Loop Unrolling

int sum = 0;
for (int 1 = 0; 1 < 10; i++) {
sum += A[i];

}
int sum = 0;
sum += A[O];

sum += A[1];

sum += A[9];

Partial Loop Unrolling

int sum = 0;

int sum = 9; int 3
for (int i = 9; 1 < 10; i++) { for G =053 ¢33 3=)
sum += A[l]; sum += A[j + 1];
sum += A[j + 2];
} sum += A[j + 3];

}
for (int i = 0; i < 10; i++) {
sum += A[i];

= Benefits of loop unrolling :

Lower number of instructions in loop control code
Enables more compiler optimizations

" Unrolling too much can cause poor use of instruction

cache °

"The idea of loop fusion — also called jamming — is to
combine multiple loops over the same index range
into a single loop body, thereby saving the overhead f

loop control.
for (int
C[1i]
}
for (int
D[1]
}
for (int
C[1i]
D[1]

i

i

| I |

=0; 1 +
(A[1] +=

=0; 1+
(A[i] +=

n; ++i) {
B[i]) ? A[i]

n; ++i) {
B[i]) ? B[i]

¥

=0; 1+ n; ++1) {

(A[1] +=
(A[1] +=

B[i]) ? A[i]
B[i]) » B[i]

: B[1];

tA[L];

: B[1];
P A[L];

Eliminating Wasted Iterations

"The idea of eliminating wasted iterations is to modify
loop bounds to avoid executing loop iterations over
essentially empty loop bodies.

Optimizing Compilers

" Provide efficient mapping of program to machine
register allocation
code selection and ordering (scheduling)
dead code elimination
eliminating minor inefficiencies

" Do not (usually) improve asymptotic efficiency
up to programmer to select best overall algorithm

big-O savings are (often) more important than constant factors
" but constant factors also matter

" Have difficulty overcoming “optimization blockers”
potential memory aliasing
potential procedure side-effects @

Limitations of Optimizing Compilers

= Operate under fundamental constraint
Must not cause any change in program behavior
= Except, possibly when program making use of nonstandard language features
Often prevents it from making optimizations that would only affect behavior under pathological
conditions.

= Behavior that may be obvious to the programmer can be obfuscated by languages and
coding styles
e.g., Data ranges may be more limited than variable types suggest

= Most analysis is performed only within procedures

Whole-program analysis is too expensive in most cases
Newer versions of GCC do inter-procedural analysis within individual files
= But, not between code in different files

= Most analysis is based only on static information
Compiler has difficulty anticipating run-time inputs

Optimization Blocker: Memory Aliasing

= Aliasing
Two different memory references specify single location
Easy to have happen in C

= Since allowed to do address arithmetic

= Direct access to storage structures

Get in habit of introducing local variables

= Accumulating within loops

Optimization Blocker: Procedure Calls

"\Warning: compiler treats procedure call as a black box
Procedure may have side effects
Alters global state each time called
Function may not return same value for given arguments

Depends on other parts of global state
"Remedies:

Use of inline functions

Do your own code motion

Conclusion

= Avoid premature optimization. First get correct
working code. Then optimize, preserving correctness
by regression testing.

"Reducing the work of a program does not necessarily
decrease its running time, but it is a good heuristic.

"The compiler automates many low-level
optimizations.

= To tell if the compiler is actually performing a
particular optimization, look at the assembly code.

Any Questions?

. Cext

start: addi 1, Zero, 0O0x18
addi t2, zZero, 0x21
cycle: beg tl1, t2, done

slt tO, t1, t2
bne t0O0, zero, if less

nop
sub t©tl1l, t1, t2

J cycle
nop

1f less: sub tz2, tZ2, tl
J cycle

done: add t3, tl, zero

