
Computer Architecture and Operating Systems
Lecture 15: Optimizations

Andrei Tatarnikov
atatarnikov@hse.ru 

@andrewt0301



Definition: The work of a program (on a given input) is 
the sum total of all the operations executed by the 
program.

2

Work



 Algorithm design can produce dramatic reductions in the amount of 
work it takes to solve a problem, as when a Θ(n lg n)-time sort replaces 
a Θ(n2)-time sort.

 However, reducing the work of a program does not automatically 
reduce its running time due to complex nature of computer hardware:

 instruction-level parallelism (ILP)

 caching

 vectorization

 speculation and branch prediction

 etc.

 Nevertheless, reducing the work serves as a good heuristic for reducing 
overall running time

3

Optimizing Work



Analytical assessment (asymptotic notation) is not 
enough. Implementation of an algorithmically-
efficient algorithm can be slow because of inefficient 
use of hardware. Constant factors matter!

Create tests with benchmarks and use profiling tools 
to find bottlenecks and compare algorithms.

4

Performance Assessment



5

Recommendations

Data structures
 Packing and encoding
 Augmentation
 Precomputation
 Compile-time initialization
 Caching
 Lazy evaluation
 Sparsity

Loops
 Hoisting
 Sentinels
 Loop unrolling
 Loop fusion
 Eliminating wasted iterations

Logic
 Constant folding and propagation
 Common-subexpression

elimination
 Algebraic identities
 Short-circuiting
 Ordering tests
 Creating a fast path
 Combining tests

Functions
 Inlining
 Tail-recursion elimination
 Coarsening recursion



The goal of hoisting — also called loop-invariant code 
motion — is to avoid recomputing loop-invariant code 
each time through the body of a loop.

6

Hoisting

for (int i = 0; i < 100; i++) {
a[i] = x + y;

}

int t = x + y;
for (int i = 0; i < 100; i++) {

a[i] = t;
}



Loop unrolling attempts to save work by combining 
several consecutive iterations of a loop into a single 
iteration, thereby reducing the total number of 
iterations of the loop and, consequently, the number 
of times that the instructions that control the loop 
must be executed.
Full loop unrolling: All iterations are unrolled.
Partial loop unrolling: Several, but not all, of the 

iterations are unrolled.

7

Loop Unrolling



8

Full Loop Unrolling

int sum = 0;
for (int i = 0; i < 10; i++) {

sum += A[i];
}

int sum = 0;
sum += A[0];
sum += A[1];
...
sum += A[9];



Benefits of loop unrolling 
Lower number of instructions in loop control code
Enables more compiler optimizations

 Unrolling too much can cause poor use of instruction 
cache 

9

Partial Loop Unrolling

int sum = 0;
for (int i = 0; i < 10; i++) {

sum += A[i];
}

int sum = 0;
int j;
for (j = 0; j < n-3; j += 4) {

sum += A[j];
sum += A[j + 1];
sum += A[j + 2];
sum += A[j + 3];

}
for (int i = 0; i < 10; i++) {

sum += A[i];
}



The idea of loop fusion — also called jamming — is to 
combine multiple loops over the same index range 
into a single loop body, thereby saving the overhead f 
loop control.

10

Loop Fusion

for (int i = 0; i + n; ++i) {
C[i] = (A[i] += B[i]) ? A[i] : B[i];

}
for (int i = 0; i + n; ++i) {

D[i] = (A[i] += B[i]) ? B[i] : A[i];
}

for (int i = 0; i + n; ++i) {
C[i] = (A[i] += B[i]) ? A[i] : B[i];
D[i] = (A[i] += B[i]) ? B[i] : A[i];

}



The idea of eliminating wasted iterations is to modify 
loop bounds to avoid executing loop iterations over 
essentially empty loop bodies. 

11

Eliminating Wasted Iterations



Provide efficient mapping of program to machine
 register allocation
 code selection and ordering (scheduling)
dead code elimination
eliminating minor inefficiencies

Do not (usually) improve asymptotic efficiency
up to programmer to select best overall algorithm
big-O savings are (often) more important than constant factors

 but constant factors also matter

Have difficulty overcoming “optimization blockers”
potential memory aliasing
potential procedure side-effects

12

Optimizing Compilers



 Operate under fundamental constraint
 Must not cause any change in program behavior

 Except, possibly when program making use of nonstandard language features

 Often prevents it from making optimizations that would only affect behavior under pathological 
conditions.

 Behavior that may be obvious to the programmer can be obfuscated by languages and 
coding styles
 e.g., Data ranges may be more limited than variable types suggest

 Most analysis is performed only within procedures
 Whole-program analysis is too expensive in most cases

 Newer versions of GCC do inter-procedural analysis within individual files

 But, not between code in different files

 Most analysis is based only on static information
 Compiler has difficulty anticipating run-time inputs

 When in doubt, the compiler must be conservative 13

Limitations of Optimizing Compilers



Aliasing

Two different memory references specify single location

Easy to have happen in C

 Since allowed to do address arithmetic

 Direct access to storage structures

Get in habit of introducing local variables

 Accumulating within loops

 Your way of telling compiler not to check for aliasing

14

Optimization Blocker: Memory Aliasing



Warning: compiler treats procedure call as a black box

Procedure may have side effects

Alters global state each time called

Function may not return same value for given arguments

Depends on other parts of global state

Remedies:

Use of inline functions

Do your own code motion

15

Optimization Blocker: Procedure Calls



Avoid premature optimization. First get correct 
working code. Then optimize, preserving correctness 
by regression testing.

Reducing the work of a program does not necessarily 
decrease its running time, but it is a good heuristic.

The compiler automates many low-level 
optimizations.

To tell if the compiler is actually performing a 
particular optimization, look at the assembly code.

16

Conclusion



Any Questions?

17


