
Computer Architecture and Operating Systems
Lecture 15: Optimizations

Andrei Tatarnikov
atatarnikov@hse.ru 

@andrewt0301



Definition: The work of a program (on a given input) is 
the sum total of all the operations executed by the 
program.

2

Work



 Algorithm design can produce dramatic reductions in the amount of 
work it takes to solve a problem, as when a Θ(n lg n)-time sort replaces 
a Θ(n2)-time sort.

 However, reducing the work of a program does not automatically 
reduce its running time due to complex nature of computer hardware:

 instruction-level parallelism (ILP)

 caching

 vectorization

 speculation and branch prediction

 etc.

 Nevertheless, reducing the work serves as a good heuristic for reducing 
overall running time

3

Optimizing Work



Analytical assessment (asymptotic notation) is not 
enough. Implementation of an algorithmically-
efficient algorithm can be slow because of inefficient 
use of hardware. Constant factors matter!

Create tests with benchmarks and use profiling tools 
to find bottlenecks and compare algorithms.

4

Performance Assessment



5

Recommendations

Data structures
 Packing and encoding
 Augmentation
 Precomputation
 Compile-time initialization
 Caching
 Lazy evaluation
 Sparsity

Loops
 Hoisting
 Sentinels
 Loop unrolling
 Loop fusion
 Eliminating wasted iterations

Logic
 Constant folding and propagation
 Common-subexpression

elimination
 Algebraic identities
 Short-circuiting
 Ordering tests
 Creating a fast path
 Combining tests

Functions
 Inlining
 Tail-recursion elimination
 Coarsening recursion



The goal of hoisting — also called loop-invariant code 
motion — is to avoid recomputing loop-invariant code 
each time through the body of a loop.

6

Hoisting

for (int i = 0; i < 100; i++) {
a[i] = x + y;

}

int t = x + y;
for (int i = 0; i < 100; i++) {

a[i] = t;
}



Loop unrolling attempts to save work by combining 
several consecutive iterations of a loop into a single 
iteration, thereby reducing the total number of 
iterations of the loop and, consequently, the number 
of times that the instructions that control the loop 
must be executed.
Full loop unrolling: All iterations are unrolled.
Partial loop unrolling: Several, but not all, of the 

iterations are unrolled.

7

Loop Unrolling



8

Full Loop Unrolling

int sum = 0;
for (int i = 0; i < 10; i++) {

sum += A[i];
}

int sum = 0;
sum += A[0];
sum += A[1];
...
sum += A[9];



Benefits of loop unrolling 
Lower number of instructions in loop control code
Enables more compiler optimizations

 Unrolling too much can cause poor use of instruction 
cache 

9

Partial Loop Unrolling

int sum = 0;
for (int i = 0; i < 10; i++) {

sum += A[i];
}

int sum = 0;
int j;
for (j = 0; j < n-3; j += 4) {

sum += A[j];
sum += A[j + 1];
sum += A[j + 2];
sum += A[j + 3];

}
for (int i = 0; i < 10; i++) {

sum += A[i];
}



The idea of loop fusion — also called jamming — is to 
combine multiple loops over the same index range 
into a single loop body, thereby saving the overhead f 
loop control.

10

Loop Fusion

for (int i = 0; i + n; ++i) {
C[i] = (A[i] += B[i]) ? A[i] : B[i];

}
for (int i = 0; i + n; ++i) {

D[i] = (A[i] += B[i]) ? B[i] : A[i];
}

for (int i = 0; i + n; ++i) {
C[i] = (A[i] += B[i]) ? A[i] : B[i];
D[i] = (A[i] += B[i]) ? B[i] : A[i];

}



The idea of eliminating wasted iterations is to modify 
loop bounds to avoid executing loop iterations over 
essentially empty loop bodies. 

11

Eliminating Wasted Iterations



Provide efficient mapping of program to machine
 register allocation
 code selection and ordering (scheduling)
dead code elimination
eliminating minor inefficiencies

Do not (usually) improve asymptotic efficiency
up to programmer to select best overall algorithm
big-O savings are (often) more important than constant factors

 but constant factors also matter

Have difficulty overcoming “optimization blockers”
potential memory aliasing
potential procedure side-effects

12

Optimizing Compilers



 Operate under fundamental constraint
 Must not cause any change in program behavior

 Except, possibly when program making use of nonstandard language features

 Often prevents it from making optimizations that would only affect behavior under pathological 
conditions.

 Behavior that may be obvious to the programmer can be obfuscated by languages and 
coding styles
 e.g., Data ranges may be more limited than variable types suggest

 Most analysis is performed only within procedures
 Whole-program analysis is too expensive in most cases

 Newer versions of GCC do inter-procedural analysis within individual files

 But, not between code in different files

 Most analysis is based only on static information
 Compiler has difficulty anticipating run-time inputs

 When in doubt, the compiler must be conservative 13

Limitations of Optimizing Compilers



Aliasing

Two different memory references specify single location

Easy to have happen in C

 Since allowed to do address arithmetic

 Direct access to storage structures

Get in habit of introducing local variables

 Accumulating within loops

 Your way of telling compiler not to check for aliasing

14

Optimization Blocker: Memory Aliasing



Warning: compiler treats procedure call as a black box

Procedure may have side effects

Alters global state each time called

Function may not return same value for given arguments

Depends on other parts of global state

Remedies:

Use of inline functions

Do your own code motion

15

Optimization Blocker: Procedure Calls



Avoid premature optimization. First get correct 
working code. Then optimize, preserving correctness 
by regression testing.

Reducing the work of a program does not necessarily 
decrease its running time, but it is a good heuristic.

The compiler automates many low-level 
optimizations.

To tell if the compiler is actually performing a 
particular optimization, look at the assembly code.

16

Conclusion



Any Questions?

17


