
Computer Architecture and Operating Systems
Lecture 14: Thread-Level Parallelism

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Goals
Task-level (process-level) parallelism
High throughput for independent jobs

Parallel processing program
 Single program run on multiple processors

Implementations
Hardware multithreading
Multicore microprocessors
Chips with multiple processors (cores)

Multiprocessors
Connecting multiple computers to get higher performance
 Scalability, availability, power efficiency

2

Why We Need Thread-Level Parallelism

Parallel hardware requires parallel software

Parallel software is the problem

Need to get significant performance improvement

Otherwise, just use a faster uniprocessor, since it is easier

Difficulties

Partitioning

Coordination

Communications overhead

3

Challenge: Parallel Programming

Process: program running on a computer

Multiple processes can run at once: e.g., surfing Web,

playing music, writing a paper

Separate virtual memory, stack, registers

Thread: part of a program

Each process has multiple threads: e.g., a word processor

may have threads for typing, spell checking, printing

Shared virtual memory, separate stack and registers

4

Threading: Definitions

One thread runs at once

When one thread stalls (for example, waiting for
memory):
Architectural state of that thread stored
Architectural state of waiting thread loaded into processor

and it runs
Called context switching (can take thousands of cycles)

Appears to user like all threads running
simultaneously

Does not improve performance

5

Threads in Conventional Uniprocessor (SISD)

Sequential part can limit speedup

Example: 100 processors, 90 × speedup?
Tnew = Tparallelizable/100 + Tsequential

 Speedup =

Solving: Fparallelizable = 0.999

Need sequential part to be 0.1% of original time
6

Parallel Processing Challenge: Amdahl’s Law

unaffected

affected

improved
T

factor timprovemen

T
T

90
/100F)F(1

1

ableparallelizableparalleliz

Workload: sum of 10 scalars, and 10 × 10 matrix sum
Speed up from 10 to 100 processors

Single processor: Time = (10 + 100) × tadd

10 processors
Time = 10 × tadd + 100/10 × tadd = 20 × tadd
Speedup = 110/20 = 5.5 (55% of potential)

100 processors
Time = 10 × tadd + 100/100 × tadd = 11 × tadd

Speedup = 110/11 = 10 (10% of potential)

Assumes load can be balanced across processors
7

Scaling Example 1

What if matrix size is 100 × 100?

Single processor: Time = (10 + 10000) × tadd

10 processors
Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd
Speedup = 10010/1010 = 9.9 (99% of potential)

100 processors
Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

Speedup = 10010/110 = 91 (91% of potential)

Assuming load balanced
8

Scaling Example 2

Strong scaling: problem size fixed
As in the examples

Weak scaling: problem size proportional to number of
processors
10 processors, 10 × 10 matrix
 Time = 20 × tadd

100 processors, 32 × 32 matrix
 Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

Constant performance in this example
9

Strong vs Weak Scaling

Multiple copies of architectural state

Multiple threads active at once:
When one thread stalls, another runs immediately
 If one thread can’t keep all execution units busy, another

thread can use them

Does not increase instruction-level parallelism (ILP) of
single thread, but increases throughput

 Intel calls this “hyperthreading”

 10

Hardware Multithreading

Performing multiple threads of execution in parallel
 Replicate registers, PC, etc.

 Fast switching between threads

Fine-grained multithreading
 Switch threads after each cycle

 Interleave instruction execution

 If one thread stalls, others are executed

Coarse-grained multithreading
Only switch on long stall (e.g., L2-cache miss)

 Simplifies hardware, but doesn’t hide short stalls (eg, data hazards)

Simultaneous multithreading 11

Hardware Multithreading

In multiple-issue dynamically scheduled processor
Schedule instructions from multiple threads
 Instructions from independent threads execute when

function units are available
Within threads, dependencies handled by scheduling and

register renaming

Example: Intel Pentium-4 HT
Two threads: duplicated registers, shared function units

and caches

12

Simultaneous Multithreading

13

Multithreading Example

Multiple processors (cores) with a method of
communication between them

Types:
Homogeneous: multiple cores with shared memory
Heterogeneous: separate cores for different tasks (for

example, DSP and CPU in cell phone)
Clusters: each core has own memory system

14

Multiprocessors (MIMD)

SMP: shared memory multiprocessor
Hardware provides single physical address space for all processors

 Synchronize shared variables using locks

Memory access time

UMA (uniform) vs. NUMA (nonuniform)

15

Multicores: Shared Memory

Suppose two CPU cores share a physical address space
Write-through caches

16

Multicores and Cache Coherence

Time

step

Event CPU A’s

cache

CPU B’s

cache

Memor

y

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Informally: Reads return most recently written value

Formally:
P writes X; P reads X (no intervening writes)
 read returns written value
P1 writes X; P2 reads X (sufficiently later)
 read returns written value
 CPU B reading X after step 3 in example

P1 writes X, P2 writes X
 all processors see writes in the same order
 End up with the same final value for X

17

Coherence Defined

Operations performed by caches in multiprocessors to
ensure coherence
Migration of data to local caches
 Reduces bandwidth for shared memory

Replication of read-shared data
 Reduces contention for access

Snooping protocols
Each cache monitors bus reads/writes

Directory-based protocols
Caches and memory record sharing status of blocks in a

directory
18

Cache Coherence Protocols

Atomic exchange
 Swaps register with memory location

Test-and-set
 Sets under condition

Fetch-and-increment
 Reads original value from memory and increments it in memory

Requires read and write in uninterruptable instruction

RISC-V: load reserved/store conditional
 If the memory location specified by the load is changed before the

store conditional to the same address, the store conditional fails 19

Synchronization: Basic Building Blocks

Atomic exchange (EXCH):
try: mov x3,x4 # mov exchange value
 lr x2,x1 # load reserved from
 sc x3,0(x1) # store conditional
 bnez x3,try # branch store fails
 mov x4,x2 # put load value in x4?

Atomic increment:
try: lr x2,x1 # load reserved 0(x1)
 addi x3,x2,1 # increment
 sc x3,0(x1) # store conditional
 bnez x3,try # branch store fails

 20

Implementing Locks

Each processor has private physical address space

Hardware sends/receives messages between processors

21

Multiprocessors: Message Passing

Any Questions?

22

