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Goals 
Task-level (process-level) parallelism 
High throughput for independent jobs 

Parallel processing program 
 Single program run on multiple processors 

Implementations 
Hardware multithreading 
Multicore microprocessors 
Chips with multiple processors (cores) 

Multiprocessors 
Connecting multiple computers to get higher performance 
 Scalability, availability, power efficiency 
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Why We Need Thread-Level Parallelism 



Parallel hardware requires parallel software 

Parallel software is the problem 

Need to get significant performance improvement 

Otherwise, just use a faster uniprocessor, since it is easier 

Difficulties 

Partitioning 

Coordination 

Communications overhead 
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Challenge: Parallel Programming 



Process: program running on a computer 

Multiple processes can run at once: e.g., surfing Web, 

playing music, writing a paper 

Separate virtual memory, stack, registers 

Thread: part of a program 

Each process has multiple threads: e.g., a word processor 

may have threads for typing, spell checking, printing 

Shared virtual memory, separate stack and registers 
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Threading: Definitions 



One thread runs at once 

When one thread stalls (for example, waiting for 
memory): 
Architectural state of that thread stored 
Architectural state of waiting thread loaded into processor 

and it runs 
Called context switching (can take thousands of cycles) 

Appears to user like all threads running 
simultaneously 

Does not improve performance  
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Threads in Conventional Uniprocessor (SISD) 



Sequential part can limit speedup 

Example: 100 processors, 90 × speedup? 
Tnew = Tparallelizable/100 + Tsequential 

  Speedup = 

Solving: Fparallelizable = 0.999 

Need sequential part to be 0.1% of original time 
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Parallel Processing Challenge: Amdahl’s Law 
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Workload: sum of 10 scalars, and 10 × 10 matrix sum 
Speed up from 10 to 100 processors 

Single processor: Time = (10 + 100) × tadd 

10 processors 
Time = 10 × tadd + 100/10 × tadd = 20 × tadd 
Speedup = 110/20 = 5.5 (55% of potential) 

100 processors 
Time = 10 × tadd + 100/100 × tadd = 11 × tadd 

Speedup = 110/11 = 10 (10% of potential) 

Assumes load can be balanced across processors 
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Scaling Example 1 



What if matrix size is 100 × 100? 

Single processor: Time = (10 + 10000) × tadd 

10 processors 
Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd 
Speedup = 10010/1010 = 9.9 (99% of potential) 

100 processors 
Time = 10 × tadd + 10000/100 × tadd = 110 × tadd 

Speedup = 10010/110 = 91 (91% of potential) 

Assuming load balanced 
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Scaling Example 2 



Strong scaling: problem size fixed 
As in the examples 

Weak scaling: problem size proportional to number of 
processors 
10 processors, 10 × 10 matrix 
 Time = 20 × tadd 

100 processors, 32 × 32 matrix 
 Time = 10 × tadd + 1000/100 × tadd = 20 × tadd 

Constant performance in this example 
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Strong vs Weak Scaling 



Multiple copies of architectural state 

Multiple threads active at once: 
When one thread stalls, another runs immediately 
 If one thread can’t keep all execution units busy, another 

thread can use them 

Does not increase instruction-level parallelism (ILP) of 
single thread, but increases throughput  

 

 Intel calls this “hyperthreading” 
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Hardware Multithreading 



Performing multiple threads of execution in parallel 
 Replicate registers, PC, etc. 

 Fast switching between threads 

Fine-grained multithreading 
 Switch threads after each cycle 

 Interleave instruction execution 

 If one thread stalls, others are executed 

Coarse-grained multithreading 
Only switch on long stall (e.g., L2-cache miss) 

 Simplifies hardware, but doesn’t hide short stalls (eg, data hazards) 

Simultaneous multithreading 11 

Hardware Multithreading 



In multiple-issue dynamically scheduled processor 
Schedule instructions from multiple threads 
 Instructions from independent threads execute when 

function units are available 
Within threads, dependencies handled by scheduling and 

register renaming 

Example: Intel Pentium-4 HT 
Two threads: duplicated registers, shared function units 

and caches 
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Simultaneous Multithreading 
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Multithreading Example 



Multiple processors (cores) with a method of 
communication between them 

Types: 
Homogeneous: multiple cores with shared memory 
Heterogeneous: separate cores for different tasks (for 

example, DSP and CPU in cell phone) 
Clusters: each core has own memory system 
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Multiprocessors (MIMD) 



SMP: shared memory multiprocessor 
Hardware provides single physical address space for all processors 

 Synchronize shared variables using locks 

Memory access time 

UMA (uniform) vs. NUMA (nonuniform) 
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Multicores: Shared Memory 



Suppose two CPU cores share a physical address space 
Write-through caches 
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Multicores and Cache Coherence 

Time 

step 

Event CPU A’s 

cache 

CPU B’s 

cache 

Memor

y 

0 0 

1 CPU A reads X 0 0 

2 CPU B reads X 0 0 0 

3 CPU A writes 1 to X 1 0 1 



Informally: Reads return most recently written value 

Formally: 
P writes X; P reads X (no intervening writes) 
 read returns written value 
P1 writes X; P2 reads X (sufficiently later) 
 read returns written value 
 CPU B reading X after step 3 in example 

P1 writes X, P2 writes X 
 all processors see writes in the same order 
 End up with the same final value for X 
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Coherence Defined 



Operations performed by caches in multiprocessors to 
ensure coherence 
Migration of data to local caches 
 Reduces bandwidth for shared memory 

Replication of read-shared data 
 Reduces contention for access 

Snooping protocols 
Each cache monitors bus reads/writes 

Directory-based protocols 
Caches and memory record sharing status of blocks in a 

directory 
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Cache Coherence Protocols 



Atomic exchange 
 Swaps register with memory location 

Test-and-set 
 Sets under condition 

Fetch-and-increment 
 Reads original value from memory and increments it in memory 

Requires read and write in uninterruptable instruction 

RISC-V: load reserved/store conditional 
 If the memory location specified by the load is changed before the 

store conditional to the same address, the store conditional fails 19 

Synchronization: Basic Building Blocks 



Atomic exchange (EXCH): 
try: mov x3,x4 # mov exchange value 
  lr x2,x1 # load reserved from 
  sc x3,0(x1) # store conditional 
  bnez x3,try # branch store fails 
  mov x4,x2 # put load value in x4? 

 

Atomic increment: 
try: lr x2,x1 # load reserved 0(x1) 
  addi x3,x2,1 # increment 
  sc x3,0(x1) # store conditional 
  bnez x3,try # branch store fails 
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Implementing Locks 



Each processor has private physical address space 

Hardware sends/receives messages between processors 
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Multiprocessors: Message Passing 



Any Questions? 
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