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Goals 
Task-level (process-level) parallelism 
High throughput for independent jobs 

Parallel processing program 
 Single program run on multiple processors 

Implementations 
Hardware multithreading 
Multicore microprocessors 
Chips with multiple processors (cores) 

Multiprocessors 
Connecting multiple computers to get higher performance 
 Scalability, availability, power efficiency 
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Why We Need Thread-Level Parallelism 



Parallel hardware requires parallel software 

Parallel software is the problem 

Need to get significant performance improvement 

Otherwise, just use a faster uniprocessor, since it is easier 

Difficulties 

Partitioning 

Coordination 

Communications overhead 
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Challenge: Parallel Programming 



Process: program running on a computer 

Multiple processes can run at once: e.g., surfing Web, 

playing music, writing a paper 

Separate virtual memory, stack, registers 

Thread: part of a program 

Each process has multiple threads: e.g., a word processor 

may have threads for typing, spell checking, printing 

Shared virtual memory, separate stack and registers 
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Threading: Definitions 



One thread runs at once 

When one thread stalls (for example, waiting for 
memory): 
Architectural state of that thread stored 
Architectural state of waiting thread loaded into processor 

and it runs 
Called context switching (can take thousands of cycles) 

Appears to user like all threads running 
simultaneously 

Does not improve performance  
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Threads in Conventional Uniprocessor (SISD) 



Sequential part can limit speedup 

Example: 100 processors, 90 × speedup? 
Tnew = Tparallelizable/100 + Tsequential 

  Speedup = 

Solving: Fparallelizable = 0.999 

Need sequential part to be 0.1% of original time 
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Parallel Processing Challenge: Amdahl’s Law 
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Workload: sum of 10 scalars, and 10 × 10 matrix sum 
Speed up from 10 to 100 processors 

Single processor: Time = (10 + 100) × tadd 

10 processors 
Time = 10 × tadd + 100/10 × tadd = 20 × tadd 
Speedup = 110/20 = 5.5 (55% of potential) 

100 processors 
Time = 10 × tadd + 100/100 × tadd = 11 × tadd 

Speedup = 110/11 = 10 (10% of potential) 

Assumes load can be balanced across processors 
7 

Scaling Example 1 



What if matrix size is 100 × 100? 

Single processor: Time = (10 + 10000) × tadd 

10 processors 
Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd 
Speedup = 10010/1010 = 9.9 (99% of potential) 

100 processors 
Time = 10 × tadd + 10000/100 × tadd = 110 × tadd 

Speedup = 10010/110 = 91 (91% of potential) 

Assuming load balanced 
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Scaling Example 2 



Strong scaling: problem size fixed 
As in the examples 

Weak scaling: problem size proportional to number of 
processors 
10 processors, 10 × 10 matrix 
 Time = 20 × tadd 

100 processors, 32 × 32 matrix 
 Time = 10 × tadd + 1000/100 × tadd = 20 × tadd 

Constant performance in this example 
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Strong vs Weak Scaling 



Multiple copies of architectural state 

Multiple threads active at once: 
When one thread stalls, another runs immediately 
 If one thread can’t keep all execution units busy, another 

thread can use them 

Does not increase instruction-level parallelism (ILP) of 
single thread, but increases throughput  

 

 Intel calls this “hyperthreading” 
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Hardware Multithreading 



Performing multiple threads of execution in parallel 
 Replicate registers, PC, etc. 

 Fast switching between threads 

Fine-grained multithreading 
 Switch threads after each cycle 

 Interleave instruction execution 

 If one thread stalls, others are executed 

Coarse-grained multithreading 
Only switch on long stall (e.g., L2-cache miss) 

 Simplifies hardware, but doesn’t hide short stalls (eg, data hazards) 

Simultaneous multithreading 11 

Hardware Multithreading 



In multiple-issue dynamically scheduled processor 
Schedule instructions from multiple threads 
 Instructions from independent threads execute when 

function units are available 
Within threads, dependencies handled by scheduling and 

register renaming 

Example: Intel Pentium-4 HT 
Two threads: duplicated registers, shared function units 

and caches 
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Simultaneous Multithreading 
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Multithreading Example 



Multiple processors (cores) with a method of 
communication between them 

Types: 
Homogeneous: multiple cores with shared memory 
Heterogeneous: separate cores for different tasks (for 

example, DSP and CPU in cell phone) 
Clusters: each core has own memory system 

 

14 

Multiprocessors (MIMD) 



SMP: shared memory multiprocessor 
Hardware provides single physical address space for all processors 

 Synchronize shared variables using locks 

Memory access time 

UMA (uniform) vs. NUMA (nonuniform) 
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Multicores: Shared Memory 



Suppose two CPU cores share a physical address space 
Write-through caches 
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Multicores and Cache Coherence 

Time 

step 

Event CPU A’s 

cache 

CPU B’s 

cache 

Memor

y 

0 0 

1 CPU A reads X 0 0 

2 CPU B reads X 0 0 0 

3 CPU A writes 1 to X 1 0 1 



Informally: Reads return most recently written value 

Formally: 
P writes X; P reads X (no intervening writes) 
 read returns written value 
P1 writes X; P2 reads X (sufficiently later) 
 read returns written value 
 CPU B reading X after step 3 in example 

P1 writes X, P2 writes X 
 all processors see writes in the same order 
 End up with the same final value for X 
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Coherence Defined 



Operations performed by caches in multiprocessors to 
ensure coherence 
Migration of data to local caches 
 Reduces bandwidth for shared memory 

Replication of read-shared data 
 Reduces contention for access 

Snooping protocols 
Each cache monitors bus reads/writes 

Directory-based protocols 
Caches and memory record sharing status of blocks in a 

directory 
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Cache Coherence Protocols 



Atomic exchange 
 Swaps register with memory location 

Test-and-set 
 Sets under condition 

Fetch-and-increment 
 Reads original value from memory and increments it in memory 

Requires read and write in uninterruptable instruction 

RISC-V: load reserved/store conditional 
 If the memory location specified by the load is changed before the 

store conditional to the same address, the store conditional fails 19 

Synchronization: Basic Building Blocks 



Atomic exchange (EXCH): 
try: mov x3,x4 # mov exchange value 
  lr x2,x1 # load reserved from 
  sc x3,0(x1) # store conditional 
  bnez x3,try # branch store fails 
  mov x4,x2 # put load value in x4? 

 

Atomic increment: 
try: lr x2,x1 # load reserved 0(x1) 
  addi x3,x2,1 # increment 
  sc x3,0(x1) # store conditional 
  bnez x3,try # branch store fails 
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Implementing Locks 



Each processor has private physical address space 

Hardware sends/receives messages between processors 
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Multiprocessors: Message Passing 



Any Questions? 
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