
Computer Architecture and Operating Systems
Lecture 14: Thread-Level Parallelism

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Goals
Task-level (process-level) parallelism
High throughput for independent jobs

Parallel processing program
 Single program run on multiple processors

Implementations
Hardware multithreading
Multicore microprocessors
Chips with multiple processors (cores)

Multiprocessors
Connecting multiple computers to get higher performance
 Scalability, availability, power efficiency

2

Why We Need Thread-Level Parallelism

Parallel hardware requires parallel software

Parallel software is the problem

Need to get significant performance improvement

Otherwise, just use a faster uniprocessor, since it is easier

Difficulties

Partitioning

Coordination

Communications overhead

3

Challenge: Parallel Programming

Process: program running on a computer

Multiple processes can run at once: e.g., surfing Web,

playing music, writing a paper

Separate virtual memory, stack, registers

Thread: part of a program

Each process has multiple threads: e.g., a word processor

may have threads for typing, spell checking, printing

Shared virtual memory, separate stack and registers

4

Threading: Definitions

One thread runs at once

When one thread stalls (for example, waiting for
memory):
Architectural state of that thread stored
Architectural state of waiting thread loaded into processor

and it runs
Called context switching (can take thousands of cycles)

Appears to user like all threads running
simultaneously

Does not improve performance

5

Threads in Conventional Uniprocessor (SISD)

Sequential part can limit speedup

Example: 100 processors, 90 × speedup?
Tnew = Tparallelizable/100 + Tsequential

 Speedup =

Solving: Fparallelizable = 0.999

Need sequential part to be 0.1% of original time
6

Parallel Processing Challenge: Amdahl’s Law

unaffected

affected

improved
T

factor timprovemen

T
T 

90
/100F)F(1

1

ableparallelizableparalleliz




Workload: sum of 10 scalars, and 10 × 10 matrix sum
Speed up from 10 to 100 processors

Single processor: Time = (10 + 100) × tadd

10 processors
Time = 10 × tadd + 100/10 × tadd = 20 × tadd
Speedup = 110/20 = 5.5 (55% of potential)

100 processors
Time = 10 × tadd + 100/100 × tadd = 11 × tadd

Speedup = 110/11 = 10 (10% of potential)

Assumes load can be balanced across processors
7

Scaling Example 1

What if matrix size is 100 × 100?

Single processor: Time = (10 + 10000) × tadd

10 processors
Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd
Speedup = 10010/1010 = 9.9 (99% of potential)

100 processors
Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

Speedup = 10010/110 = 91 (91% of potential)

Assuming load balanced
8

Scaling Example 2

Strong scaling: problem size fixed
As in the examples

Weak scaling: problem size proportional to number of
processors
10 processors, 10 × 10 matrix
 Time = 20 × tadd

100 processors, 32 × 32 matrix
 Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

Constant performance in this example
9

Strong vs Weak Scaling

Multiple copies of architectural state

Multiple threads active at once:
When one thread stalls, another runs immediately
 If one thread can’t keep all execution units busy, another

thread can use them

Does not increase instruction-level parallelism (ILP) of
single thread, but increases throughput

 Intel calls this “hyperthreading”

 10

Hardware Multithreading

Performing multiple threads of execution in parallel
 Replicate registers, PC, etc.

 Fast switching between threads

Fine-grained multithreading
 Switch threads after each cycle

 Interleave instruction execution

 If one thread stalls, others are executed

Coarse-grained multithreading
Only switch on long stall (e.g., L2-cache miss)

 Simplifies hardware, but doesn’t hide short stalls (eg, data hazards)

Simultaneous multithreading 11

Hardware Multithreading

In multiple-issue dynamically scheduled processor
Schedule instructions from multiple threads
 Instructions from independent threads execute when

function units are available
Within threads, dependencies handled by scheduling and

register renaming

Example: Intel Pentium-4 HT
Two threads: duplicated registers, shared function units

and caches

12

Simultaneous Multithreading

13

Multithreading Example

Multiple processors (cores) with a method of
communication between them

Types:
Homogeneous: multiple cores with shared memory
Heterogeneous: separate cores for different tasks (for

example, DSP and CPU in cell phone)
Clusters: each core has own memory system

14

Multiprocessors (MIMD)

SMP: shared memory multiprocessor
Hardware provides single physical address space for all processors

 Synchronize shared variables using locks

Memory access time

UMA (uniform) vs. NUMA (nonuniform)

15

Multicores: Shared Memory

Suppose two CPU cores share a physical address space
Write-through caches

16

Multicores and Cache Coherence

Time

step

Event CPU A’s

cache

CPU B’s

cache

Memor

y

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Informally: Reads return most recently written value

Formally:
P writes X; P reads X (no intervening writes)
 read returns written value
P1 writes X; P2 reads X (sufficiently later)
 read returns written value
 CPU B reading X after step 3 in example

P1 writes X, P2 writes X
 all processors see writes in the same order
 End up with the same final value for X

17

Coherence Defined

Operations performed by caches in multiprocessors to
ensure coherence
Migration of data to local caches
 Reduces bandwidth for shared memory

Replication of read-shared data
 Reduces contention for access

Snooping protocols
Each cache monitors bus reads/writes

Directory-based protocols
Caches and memory record sharing status of blocks in a

directory
18

Cache Coherence Protocols

Atomic exchange
 Swaps register with memory location

Test-and-set
 Sets under condition

Fetch-and-increment
 Reads original value from memory and increments it in memory

Requires read and write in uninterruptable instruction

RISC-V: load reserved/store conditional
 If the memory location specified by the load is changed before the

store conditional to the same address, the store conditional fails 19

Synchronization: Basic Building Blocks

Atomic exchange (EXCH):
try: mov x3,x4 # mov exchange value
 lr x2,x1 # load reserved from
 sc x3,0(x1) # store conditional
 bnez x3,try # branch store fails
 mov x4,x2 # put load value in x4?

Atomic increment:
try: lr x2,x1 # load reserved 0(x1)
 addi x3,x2,1 # increment
 sc x3,0(x1) # store conditional
 bnez x3,try # branch store fails

 20

Implementing Locks

Each processor has private physical address space

Hardware sends/receives messages between processors

21

Multiprocessors: Message Passing

Any Questions?

22

