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Pipelining: executing multiple instructions in parallel 

To increase ILP 
Deeper pipeline 
 Less work per stage  shorter clock cycle 

Multiple issue 
 Replicate pipeline stages  multiple pipelines 
 Start multiple instructions per clock cycle 

 CPI < 1, so use Instructions Per Cycle (IPC) 

 E.g., 4GHz 4-way multiple-issue 
• 16 BIPS, peak CPI = 0.25, peak IPC = 4 

 But dependencies reduce this in practice 
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Instruction-Level Parallelism (ILP) 



Static multiple issue 
Compiler groups instructions to be issued together 
Packages them into “issue slots” 
Compiler detects and avoids hazards 

Dynamic multiple issue 
CPU examines instruction stream and chooses instructions 

to issue each cycle 
Compiler can help by reordering instructions 
CPU resolves hazards using advanced techniques at runtime 
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Multiple Issue 



“Guess” what to do with an instruction 
Start operation as soon as possible 
Check whether guess was right 
 If so, complete the operation 
 If not, roll-back and do the right thing 

Common to static and dynamic multiple issue 
Examples 
Speculate on branch outcome 
 Roll back if path taken is different 

Speculate on load 
 Roll back if location is updated 
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Speculation 



Compiler can reorder instructions 

e.g., move load before branch 

Can include “fix-up” instructions to recover from incorrect 
guess 

Hardware can look ahead for instructions to execute 

Buffer results until it determines they are actually needed 

Flush buffers on incorrect speculation 
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Compiler/Hardware Speculation 



Compiler groups instructions into “issue packets” 

Group of instructions that can be issued on a single cycle 

Determined by pipeline resources required 

Think of an issue packet as a very long instruction 

Specifies multiple concurrent operations 

 Very Long Instruction Word (VLIW) 
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Static Multiple Issue 



Compiler must remove some/all hazards 

Reorder instructions into issue packets 

No dependencies with a packet 

Possibly some dependencies between packets 

 Varies between ISAs; compiler must know! 

Pad with nop if necessary 
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Scheduling Static Multiple Issue 



Two-issue packets 
One ALU/branch instruction 
One load/store instruction 
64-bit aligned 
 ALU/branch, then load/store 

 Pad an unused instruction with nop 
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RISC-V with Static Dual Issue 

Address Instruction type Pipeline Stages 

n ALU/branch IF ID EX MEM WB 

n + 4 Load/store IF ID EX MEM WB 

n + 8 ALU/branch IF ID EX MEM WB 

n + 12 Load/store IF ID EX MEM WB 

n + 16 ALU/branch IF ID EX MEM WB 

n + 20 Load/store IF ID EX MEM WB 



“Superscalar” processors 

CPU decides whether to issue 0, 1, 2, … each cycle 

Avoiding structural and data hazards 

Avoids the need for compiler scheduling 

Though it may still help 

Code semantics ensured by the CPU 
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Dynamic Multiple Issue 



Allow the CPU to execute instructions out of order to 
avoid stalls 
But commit result to registers in order 

Example 
 ld   x31,20(x21) 
add  x1,x31,x2 
sub  x23,x23,x3 
andi x5,x23,20 
Can start sub while add is waiting for ld 
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Dynamic Pipeline Scheduling 



Why not just let the compiler schedule code? 

Not all stalls are predicable 

e.g., cache misses 

Can’t always schedule around branches 

Branch outcome is dynamically determined 

Different implementations of an ISA have different 
latencies and hazards 
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Why Do Dynamic Scheduling? 
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Dynamically Scheduled CPU 

Results also sent to 

any waiting 

reservation stations 

Reorders 

buffer for 

register writes Can supply 

operands for 

issued instructions 

Preserves 

dependencies 

Hold pending 

operands 



Yes, but not as much as we’d like 

Programs have real dependencies that limit ILP 

Some dependencies are hard to eliminate 
e.g., pointer aliasing 

Some parallelism is hard to expose 
Limited window size during instruction issue 

Memory delays and limited bandwidth 
Hard to keep pipelines full 

Speculation can help if done well 
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Does Multiple Issue Work? 



 Single instruction, single data (SISD) stream: A single processor 
executes a single instruction stream to operate on data stored in a single 
memory. Uniprocessors fall into this category. 

 Single instruction, multiple data (SIMD) stream: A single machine 
instruction controls the simultaneous execution of a number of 
processing elements on a lockstep basis. Each has an associated data 
memory, so that instructions are executed on different sets of data by 
different processors. Vector and array processors fall into this category. 

Multiple instruction, single data (MISD) stream: A sequence of data is 
transmitted to a set of processors, each of which executes a different 
instruction sequence. Not commercially implemented. 

Multiple instruction, multiple data (MIMD) stream: A set of processors 
simultaneously execute different instruction sequences on different 
data sets. SMPs, clusters, and NUMA systems fit into this category. 14 

More Types of Parallels 



An alternate classification 

 

 

 

 

 

SPMD: Single Program Multiple Data 
A parallel program on a MIMD computer 
Conditional code for different processors 
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Instruction and Data Streams 

Data Streams 

Single Multiple 

Instruction 

Streams 

Single SISD: 

Intel Pentium 4 

SIMD: SSE 

instructions of x86 

Multiple MISD: 

No examples today 

MIMD: 

Intel Xeon e5345 



ISA influences design of datapath and control 

Datapath and control influence design of ISA 

Pipelining improves instruction throughput 
using parallelism 
More instructions completed per second 
Latency for each instruction not reduced 

Hazards: structural, data, control 

Multiple issue and dynamic scheduling (ILP) 
Dependencies limit achievable parallelism 
Complexity leads to the power wall 
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Conclusion 



Any Questions? 
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