
Computer Architecture and Operating Systems
Lecture 13: Advanced instruction-level parallelism

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Pipelining: executing multiple instructions in parallel

To increase ILP
Deeper pipeline
 Less work per stage shorter clock cycle

Multiple issue
 Replicate pipeline stages multiple pipelines
 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue
• 16 BIPS, peak CPI = 0.25, peak IPC = 4

 But dependencies reduce this in practice

2

Instruction-Level Parallelism (ILP)

Static multiple issue
Compiler groups instructions to be issued together
Packages them into “issue slots”
Compiler detects and avoids hazards

Dynamic multiple issue
CPU examines instruction stream and chooses instructions

to issue each cycle
Compiler can help by reordering instructions
CPU resolves hazards using advanced techniques at runtime

3

Multiple Issue

“Guess” what to do with an instruction
Start operation as soon as possible
Check whether guess was right
 If so, complete the operation
 If not, roll-back and do the right thing

Common to static and dynamic multiple issue
Examples
Speculate on branch outcome
 Roll back if path taken is different

Speculate on load
 Roll back if location is updated

4

Speculation

Compiler can reorder instructions

e.g., move load before branch

Can include “fix-up” instructions to recover from incorrect
guess

Hardware can look ahead for instructions to execute

Buffer results until it determines they are actually needed

Flush buffers on incorrect speculation

5

Compiler/Hardware Speculation

Compiler groups instructions into “issue packets”

Group of instructions that can be issued on a single cycle

Determined by pipeline resources required

Think of an issue packet as a very long instruction

Specifies multiple concurrent operations

 Very Long Instruction Word (VLIW)

6

Static Multiple Issue

Compiler must remove some/all hazards

Reorder instructions into issue packets

No dependencies with a packet

Possibly some dependencies between packets

 Varies between ISAs; compiler must know!

Pad with nop if necessary

7

Scheduling Static Multiple Issue

Two-issue packets
One ALU/branch instruction
One load/store instruction
64-bit aligned
 ALU/branch, then load/store

 Pad an unused instruction with nop

8

RISC-V with Static Dual Issue

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

“Superscalar” processors

CPU decides whether to issue 0, 1, 2, … each cycle

Avoiding structural and data hazards

Avoids the need for compiler scheduling

Though it may still help

Code semantics ensured by the CPU

9

Dynamic Multiple Issue

Allow the CPU to execute instructions out of order to
avoid stalls
But commit result to registers in order

Example
 ld x31,20(x21)
add x1,x31,x2
sub x23,x23,x3
andi x5,x23,20
Can start sub while add is waiting for ld

10

Dynamic Pipeline Scheduling

Why not just let the compiler schedule code?

Not all stalls are predicable

e.g., cache misses

Can’t always schedule around branches

Branch outcome is dynamically determined

Different implementations of an ISA have different
latencies and hazards

11

Why Do Dynamic Scheduling?

12

Dynamically Scheduled CPU

Results also sent to

any waiting

reservation stations

Reorders

buffer for

register writes Can supply

operands for

issued instructions

Preserves

dependencies

Hold pending

operands

Yes, but not as much as we’d like

Programs have real dependencies that limit ILP

Some dependencies are hard to eliminate
e.g., pointer aliasing

Some parallelism is hard to expose
Limited window size during instruction issue

Memory delays and limited bandwidth
Hard to keep pipelines full

Speculation can help if done well
13

Does Multiple Issue Work?

 Single instruction, single data (SISD) stream: A single processor
executes a single instruction stream to operate on data stored in a single
memory. Uniprocessors fall into this category.

 Single instruction, multiple data (SIMD) stream: A single machine
instruction controls the simultaneous execution of a number of
processing elements on a lockstep basis. Each has an associated data
memory, so that instructions are executed on different sets of data by
different processors. Vector and array processors fall into this category.

Multiple instruction, single data (MISD) stream: A sequence of data is
transmitted to a set of processors, each of which executes a different
instruction sequence. Not commercially implemented.

Multiple instruction, multiple data (MIMD) stream: A set of processors
simultaneously execute different instruction sequences on different
data sets. SMPs, clusters, and NUMA systems fit into this category. 14

More Types of Parallels

An alternate classification

SPMD: Single Program Multiple Data
A parallel program on a MIMD computer
Conditional code for different processors

15

Instruction and Data Streams

Data Streams

Single Multiple

Instruction

Streams

Single SISD:

Intel Pentium 4

SIMD: SSE

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345

ISA influences design of datapath and control

Datapath and control influence design of ISA

Pipelining improves instruction throughput
using parallelism
More instructions completed per second
Latency for each instruction not reduced

Hazards: structural, data, control

Multiple issue and dynamic scheduling (ILP)
Dependencies limit achievable parallelism
Complexity leads to the power wall

16

Conclusion

Any Questions?

17

