
Computer Architecture and Operating Systems
Lecture 13: Advanced instruction-level parallelism

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Pipelining: executing multiple instructions in parallel

To increase ILP
Deeper pipeline
 Less work per stage  shorter clock cycle

Multiple issue
 Replicate pipeline stages  multiple pipelines
 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue
• 16 BIPS, peak CPI = 0.25, peak IPC = 4

 But dependencies reduce this in practice

2

Instruction-Level Parallelism (ILP)

Static multiple issue
Compiler groups instructions to be issued together
Packages them into “issue slots”
Compiler detects and avoids hazards

Dynamic multiple issue
CPU examines instruction stream and chooses instructions

to issue each cycle
Compiler can help by reordering instructions
CPU resolves hazards using advanced techniques at runtime

3

Multiple Issue

“Guess” what to do with an instruction
Start operation as soon as possible
Check whether guess was right
 If so, complete the operation
 If not, roll-back and do the right thing

Common to static and dynamic multiple issue
Examples
Speculate on branch outcome
 Roll back if path taken is different

Speculate on load
 Roll back if location is updated

4

Speculation

Compiler can reorder instructions

e.g., move load before branch

Can include “fix-up” instructions to recover from incorrect
guess

Hardware can look ahead for instructions to execute

Buffer results until it determines they are actually needed

Flush buffers on incorrect speculation

5

Compiler/Hardware Speculation

Compiler groups instructions into “issue packets”

Group of instructions that can be issued on a single cycle

Determined by pipeline resources required

Think of an issue packet as a very long instruction

Specifies multiple concurrent operations

 Very Long Instruction Word (VLIW)

6

Static Multiple Issue

Compiler must remove some/all hazards

Reorder instructions into issue packets

No dependencies with a packet

Possibly some dependencies between packets

 Varies between ISAs; compiler must know!

Pad with nop if necessary

7

Scheduling Static Multiple Issue

Two-issue packets
One ALU/branch instruction
One load/store instruction
64-bit aligned
 ALU/branch, then load/store

 Pad an unused instruction with nop

8

RISC-V with Static Dual Issue

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

“Superscalar” processors

CPU decides whether to issue 0, 1, 2, … each cycle

Avoiding structural and data hazards

Avoids the need for compiler scheduling

Though it may still help

Code semantics ensured by the CPU

9

Dynamic Multiple Issue

Allow the CPU to execute instructions out of order to
avoid stalls
But commit result to registers in order

Example
 ld x31,20(x21)
add x1,x31,x2
sub x23,x23,x3
andi x5,x23,20
Can start sub while add is waiting for ld

10

Dynamic Pipeline Scheduling

Why not just let the compiler schedule code?

Not all stalls are predicable

e.g., cache misses

Can’t always schedule around branches

Branch outcome is dynamically determined

Different implementations of an ISA have different
latencies and hazards

11

Why Do Dynamic Scheduling?

12

Dynamically Scheduled CPU

Results also sent to

any waiting

reservation stations

Reorders

buffer for

register writes Can supply

operands for

issued instructions

Preserves

dependencies

Hold pending

operands

Yes, but not as much as we’d like

Programs have real dependencies that limit ILP

Some dependencies are hard to eliminate
e.g., pointer aliasing

Some parallelism is hard to expose
Limited window size during instruction issue

Memory delays and limited bandwidth
Hard to keep pipelines full

Speculation can help if done well
13

Does Multiple Issue Work?

 Single instruction, single data (SISD) stream: A single processor
executes a single instruction stream to operate on data stored in a single
memory. Uniprocessors fall into this category.

 Single instruction, multiple data (SIMD) stream: A single machine
instruction controls the simultaneous execution of a number of
processing elements on a lockstep basis. Each has an associated data
memory, so that instructions are executed on different sets of data by
different processors. Vector and array processors fall into this category.

Multiple instruction, single data (MISD) stream: A sequence of data is
transmitted to a set of processors, each of which executes a different
instruction sequence. Not commercially implemented.

Multiple instruction, multiple data (MIMD) stream: A set of processors
simultaneously execute different instruction sequences on different
data sets. SMPs, clusters, and NUMA systems fit into this category. 14

More Types of Parallels

An alternate classification

SPMD: Single Program Multiple Data
A parallel program on a MIMD computer
Conditional code for different processors

15

Instruction and Data Streams

Data Streams

Single Multiple

Instruction

Streams

Single SISD:

Intel Pentium 4

SIMD: SSE

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345

ISA influences design of datapath and control

Datapath and control influence design of ISA

Pipelining improves instruction throughput
using parallelism
More instructions completed per second
Latency for each instruction not reduced

Hazards: structural, data, control

Multiple issue and dynamic scheduling (ILP)
Dependencies limit achievable parallelism
Complexity leads to the power wall

16

Conclusion

Any Questions?

17

