
Computer Architecture and Operating Systems
Lecture 13: Data-level parallelism: Vector, SIMD, GPU

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Pipelining: executing multiple instructions in parallel

To increase ILP
Deeper pipeline

 Less work per stage shorter clock cycle

Multiple issue
 Replicate pipeline stages multiple pipelines
 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue
• 16 BIPS, peak CPI = 0.25, peak IPC = 4

 But dependencies reduce this in practice
2

Instruction-Level Parallelism (ILP)

Static multiple issue
Compiler groups instructions to be issued together
Packages them into “issue slots”
Compiler detects and avoids hazards

Dynamic multiple issue
CPU examines instruction stream and chooses instructions

to issue each cycle
Compiler can help by reordering instructions
CPU resolves hazards using advanced techniques at runtime

3

Multiple Issue

“Guess” what to do with an instruction
Start operation as soon as possible
Check whether guess was right

 If so, complete the operation
 If not, roll-back and do the right thing

Common to static and dynamic multiple issue
Examples

Speculate on branch outcome
 Roll back if path taken is different

Speculate on load
 Roll back if location is updated

4

Speculation

Compiler can reorder instructions

e.g., move load before branch

Can include “fix-up” instructions to recover from incorrect
guess

Hardware can look ahead for instructions to execute

Buffer results until it determines they are actually needed

Flush buffers on incorrect speculation

5

Compiler/Hardware Speculation

Compiler groups instructions into “issue packets”

Group of instructions that can be issued on a single cycle

Determined by pipeline resources required

Think of an issue packet as a very long instruction

Specifies multiple concurrent operations

 Very Long Instruction Word (VLIW)

6

Static Multiple Issue

Compiler must remove some/all hazards

Reorder instructions into issue packets

No dependencies with a packet

Possibly some dependencies between packets

 Varies between ISAs; compiler must know!

Pad with nop if necessary

7

Scheduling Static Multiple Issue

Two-issue packets
One ALU/branch instruction
One load/store instruction
64-bit aligned

 ALU/branch, then load/store

 Pad an unused instruction with nop

8

RISC-V with Static Dual Issue

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

“Superscalar” processors

CPU decides whether to issue 0, 1, 2, … each cycle

Avoiding structural and data hazards

Avoids the need for compiler scheduling

Though it may still help

Code semantics ensured by the CPU

9

Dynamic Multiple Issue

Allow the CPU to execute instructions out of order to
avoid stalls
But commit result to registers in order

Example
ld x31,20(x21)
add x1,x31,x2
sub x23,x23,x3
andi x5,x23,20

Can start sub while add is waiting for ld

10

Dynamic Pipeline Scheduling

Why not just let the compiler schedule code?

Not all stalls are predicable

e.g., cache misses

Can’t always schedule around branches

Branch outcome is dynamically determined

Different implementations of an ISA have different
latencies and hazards

11

Why Do Dynamic Scheduling?

12

Dynamically Scheduled CPU

Results also sent to

any waiting

reservation stations

Reorders

buffer for

register writes Can supply

operands for

issued instructions

Preserves

dependencies

Hold pending

operands

Yes, but not as much as we’d like

Programs have real dependencies that limit ILP

Some dependencies are hard to eliminate
e.g., pointer aliasing

Some parallelism is hard to expose
Limited window size during instruction issue

Memory delays and limited bandwidth
Hard to keep pipelines full

Speculation can help if done well
13

Does Multiple Issue Work?

ISA influences design of datapath and control

Datapath and control influence design of ISA

Pipelining improves instruction throughput
using parallelism
More instructions completed per second
Latency for each instruction not reduced

Hazards: structural, data, control

Multiple issue and dynamic scheduling (ILP)
Dependencies limit achievable parallelism
Complexity leads to the power wall 14

Conclusion

Data-level parallelism is parallelism achieved by

performing the same operation on independent data

Best in dealing with arrays in for loops and processing

other kinds of identically structured data

Unsuitable for control flow structures

15

Data-Level Parallelism

An alternate classification

SPMD: Single Program Multiple Data
A parallel program on a MIMD computer
Conditional code for different processors

16

Instruction and Data Streams

Data Streams

Single Multiple

Instruction

Streams

Single SISD:

Intel Pentium 4

SIMD: SSE

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345

 Single instruction, single data (SISD) stream: A single processor
executes a single instruction stream to operate on data stored in a single
memory. Uniprocessors fall into this category.

 Single instruction, multiple data (SIMD) stream: A single machine
instruction controls the simultaneous execution of a number of
processing elements on a lockstep basis. Each has an associated data
memory, so that instructions are executed on different sets of data by
different processors. Vector and array processors fall into this category.

 Multiple instruction, single data (MISD) stream: A sequence of data is
transmitted to a set of processors, each of which executes a different
instruction sequence. Not commercially implemented.

 Multiple instruction, multiple data (MIMD) stream: A set of processors
simultaneously execute different instruction sequences on different
data sets. SMPs, clusters, and NUMA systems fit into this category. 17

Types of Parallel Processing

Highly pipelined function units

Stream data from/to vector registers to units
Data collected from memory into registers
Results stored from registers to memory

Example: Vector extension to RISC-V
v0 to v31: 32 × 64-element registers, (64-bit elements)
Vector instructions

 fld.v, fsd.v: load/store vector

 fadd.d.v: add vectors of double

 fadd.d.vs: add scalar to each element of vector of double

Significantly reduces instruction-fetch bandwidth 18

Vector Processors

 Conventional RISC-V code:
fld f0,a(x3) # load scalar a
addi x5,x19,512 # end of array X

loop: fld f1,0(x19) # load x[i]
fmul.d f1,f1,f0 # a * x[i]
fld f2,0(x20) # load y[i]
fadd.d f2,f2,f1 # a * x[i] + y[i]
fsd f2,0(x20) # store y[i]
addi x19,x19,8 # increment index to x
addi x20,x20,8 # increment index to y
bltu x19,x5,loop # repeat if not done

 Vector RISC-V code:
fld f0,a(x3) # load scalar a
fld.v v0,0(x19) # load vector x
fmul.d.vs v0,v0,f0 # vector-scalar multiply
fld.v v1,0(x20) # load vector y
fadd.d.v v1,v1,v0 # vector-vector add
fsd.v v1,0(x20) # store vector y 19

Example: DAXPY (Y = a × X + Y)

Vector architectures and compilers
Simplify data-parallel programming

Explicit statement of absence of loop-carried dependences
 Reduced checking in hardware

Regular access patterns benefit from interleaved and burst
memory

Avoid control hazards by avoiding loops

More general than ad-hoc media extensions (such as
MMX, SSE)
Better match with compiler technology 20

Vector vs. Scalar

Operate elementwise on vectors of data
E.g., MMX and SSE instructions in x86

 Multiple data elements in 128-bit wide registers

All processors execute the same instruction at the
same time
Each with different data address, etc.

Simplifies synchronization

Reduced instruction control hardware

Works best for highly data-parallel applications
21

SIMD

 Vector instructions have a variable vector width, multimedia extensions
have a fixed width

 Vector instructions support strided access, multimedia extensions do
not

 Vector units can be combination of pipelined and arrayed functional
units:

22

Vector vs. Multimedia Extensions

Processing is highly data-parallel
GPUs are highly multithreaded
Use thread switching to hide memory latency

 Less reliance on multi-level caches
Graphics memory is wide and high-bandwidth

Trend toward general purpose GPUs
Heterogeneous CPU/GPU systems
CPU for sequential code, GPU for parallel code

Programming languages/APIs
DirectX, OpenGL
C for Graphics (Cg), High Level Shader Language (HLSL)
Compute Unified Device Architecture (CUDA) 23

GPU Architectures

Early video cards
Frame buffer memory with address generation for video

output

3D graphics processing
Originally high-end computers (e.g., SGI)
Moore’s Law lower cost, higher density
3D graphics cards for PCs and game consoles

Graphics Processing Units
Processors oriented to 3D graphics tasks
Vertex/pixel processing, shading, texture mapping,

rasterization 24

History of GPUs

Multiple SIMD processors, each as shown:

25

Example: NVIDIA Fermi

SIMD Processor: 16 SIMD lanes

SIMD instruction
Operates on 32 element wide threads
Dynamically scheduled on 16-wide processor over 2 cycles

32K x 32-bit registers spread across lanes
64 registers per thread context

26

Example: NVIDIA Fermi

27

GPU Memory Structures

SIMD and vector
operations match
multimedia
applications and
are easy to program

28

Concluding Remarks

Any Questions?

29

