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Pipelining: executing multiple instructions in parallel

To increase ILP
Deeper pipeline

 Less work per stage  shorter clock cycle

Multiple issue
 Replicate pipeline stages multiple pipelines
 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue
• 16 BIPS, peak CPI = 0.25, peak IPC = 4

 But dependencies reduce this in practice
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Instruction-Level Parallelism (ILP)



Static multiple issue
Compiler groups instructions to be issued together
Packages them into “issue slots”
Compiler detects and avoids hazards

Dynamic multiple issue
CPU examines instruction stream and chooses instructions 

to issue each cycle
Compiler can help by reordering instructions
CPU resolves hazards using advanced techniques at runtime
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Multiple Issue



“Guess” what to do with an instruction
Start operation as soon as possible
Check whether guess was right

 If so, complete the operation
 If not, roll-back and do the right thing

Common to static and dynamic multiple issue
Examples

Speculate on branch outcome
 Roll back if path taken is different

Speculate on load
 Roll back if location is updated
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Speculation



Compiler can reorder instructions

e.g., move load before branch

Can include “fix-up” instructions to recover from incorrect 
guess

Hardware can look ahead for instructions to execute

Buffer results until it determines they are actually needed

Flush buffers on incorrect speculation
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Compiler/Hardware Speculation



Compiler groups instructions into “issue packets”

Group of instructions that can be issued on a single cycle

Determined by pipeline resources required

Think of an issue packet as a very long instruction

Specifies multiple concurrent operations

 Very Long Instruction Word (VLIW)
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Static Multiple Issue



Compiler must remove some/all hazards

Reorder instructions into issue packets

No dependencies with a packet

Possibly some dependencies between packets

 Varies between ISAs; compiler must know!

Pad with nop if necessary
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Scheduling Static Multiple Issue



Two-issue packets
One ALU/branch instruction
One load/store instruction
64-bit aligned

 ALU/branch, then load/store

 Pad an unused instruction with nop
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RISC-V with Static Dual Issue

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB



“Superscalar” processors

CPU decides whether to issue 0, 1, 2, … each cycle

Avoiding structural and data hazards

Avoids the need for compiler scheduling

Though it may still help

Code semantics ensured by the CPU
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Dynamic Multiple Issue



Allow the CPU to execute instructions out of order to 
avoid stalls
But commit result to registers in order

Example
ld x31,20(x21)
add x1,x31,x2
sub x23,x23,x3
andi x5,x23,20

Can start sub while add is waiting for ld
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Dynamic Pipeline Scheduling



Why not just let the compiler schedule code?

Not all stalls are predicable

e.g., cache misses

Can’t always schedule around branches

Branch outcome is dynamically determined

Different implementations of an ISA have different 
latencies and hazards
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Why Do Dynamic Scheduling?
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Dynamically Scheduled CPU

Results also sent to 

any waiting 

reservation stations

Reorders 

buffer for 

register writes Can supply 

operands for 

issued instructions

Preserves 

dependencies

Hold pending 

operands



Yes, but not as much as we’d like

Programs have real dependencies that limit ILP

Some dependencies are hard to eliminate
e.g., pointer aliasing

Some parallelism is hard to expose
Limited window size during instruction issue

Memory delays and limited bandwidth
Hard to keep pipelines full

Speculation can help if done well
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Does Multiple Issue Work?



ISA influences design of datapath and control

Datapath and control influence design of ISA

Pipelining improves instruction throughput
using parallelism
More instructions completed per second
Latency for each instruction not reduced

Hazards: structural, data, control

Multiple issue and dynamic scheduling (ILP)
Dependencies limit achievable parallelism
Complexity leads to the power wall 14

Conclusion



Data-level parallelism is parallelism achieved by 

performing the same operation on independent data

Best in dealing with arrays in for loops and processing 

other kinds of identically structured data

Unsuitable for control flow structures
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Data-Level Parallelism



An alternate classification

SPMD: Single Program Multiple Data
A parallel program on a MIMD computer
Conditional code for different processors
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Instruction and Data Streams

Data Streams

Single Multiple

Instruction 

Streams

Single SISD:

Intel Pentium 4

SIMD: SSE 

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345



 Single instruction, single data (SISD) stream: A single processor 
executes a single instruction stream to operate on data stored in a single 
memory. Uniprocessors fall into this category.

 Single instruction, multiple data (SIMD) stream: A single machine 
instruction controls the simultaneous execution of a number of 
processing elements on a lockstep basis. Each has an associated data 
memory, so that instructions are executed on different sets of data by 
different processors. Vector and array processors fall into this category.

 Multiple instruction, single data (MISD) stream: A sequence of data is 
transmitted to a set of processors, each of which executes a different 
instruction sequence. Not commercially implemented.

 Multiple instruction, multiple data (MIMD) stream: A set of processors 
simultaneously execute different instruction sequences on different 
data sets. SMPs, clusters, and NUMA systems fit into this category. 17

Types of Parallel Processing



Highly pipelined function units

Stream data from/to vector registers to units
Data collected from memory into registers
Results stored from registers to memory

Example: Vector extension to RISC-V
v0 to v31: 32 × 64-element registers, (64-bit elements)
Vector instructions

 fld.v, fsd.v: load/store vector

 fadd.d.v: add vectors of double

 fadd.d.vs: add scalar to each element of vector of double

Significantly reduces instruction-fetch bandwidth 18

Vector Processors



 Conventional RISC-V code:
fld f0,a(x3)     # load scalar a
addi x5,x19,512   # end of array X

loop: fld f1,0(x19)    # load x[i]
fmul.d f1,f1,f0     # a * x[i]
fld f2,0(x20)    # load y[i]
fadd.d f2,f2,f1     # a * x[i] + y[i]
fsd f2,0(x20)    # store y[i]
addi x19,x19,8    # increment index to x
addi x20,x20,8    # increment index to y
bltu x19,x5,loop  # repeat if not done

 Vector RISC-V code:
fld f0,a(x3)     # load scalar a
fld.v v0,0(x19)    # load vector x
fmul.d.vs v0,v0,f0     # vector-scalar multiply
fld.v v1,0(x20)    # load vector y
fadd.d.v v1,v1,v0     # vector-vector add
fsd.v v1,0(x20)    # store vector y 19

Example: DAXPY (Y = a × X + Y)



Vector architectures and compilers
Simplify data-parallel programming

Explicit statement of absence of loop-carried dependences
 Reduced checking in hardware

Regular access patterns benefit from interleaved and burst 
memory

Avoid control hazards by avoiding loops

More general than ad-hoc media extensions (such as 
MMX, SSE)
Better match with compiler technology 20

Vector vs. Scalar



Operate elementwise on vectors of data
E.g., MMX and SSE instructions in x86

 Multiple data elements in 128-bit wide registers

All processors execute the same instruction at the 
same time
Each with different data address, etc.

Simplifies synchronization

Reduced instruction control hardware

Works best for highly data-parallel applications
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SIMD



 Vector instructions have a variable vector width, multimedia extensions 
have a fixed width

 Vector instructions support strided access, multimedia extensions do 
not

 Vector units can be combination of pipelined and arrayed functional 
units:
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Vector vs. Multimedia Extensions



Processing is highly data-parallel
GPUs are highly multithreaded
Use thread switching to hide memory latency

 Less reliance on multi-level caches
Graphics memory is wide and high-bandwidth

Trend toward general purpose GPUs
Heterogeneous CPU/GPU systems
CPU for sequential code, GPU for parallel code

Programming languages/APIs
DirectX, OpenGL
C for Graphics (Cg), High Level Shader Language (HLSL)
Compute Unified Device Architecture (CUDA) 23

GPU Architectures



Early video cards
Frame buffer memory with address generation for video 

output

3D graphics processing
Originally high-end computers (e.g., SGI)
Moore’s Law  lower cost, higher density
3D graphics cards for PCs and game consoles

Graphics Processing Units
Processors oriented to 3D graphics tasks
Vertex/pixel processing, shading, texture mapping,

rasterization 24

History of GPUs



Multiple SIMD processors, each as shown:
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Example: NVIDIA Fermi



SIMD Processor: 16 SIMD lanes

SIMD instruction
Operates on 32 element wide threads
Dynamically scheduled on 16-wide processor over 2 cycles

32K x 32-bit registers spread across lanes
64 registers per thread context
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Example: NVIDIA Fermi
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GPU Memory Structures



SIMD and vector
operations match 
multimedia 
applications and 
are easy to program
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Concluding Remarks



Any Questions?
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