

Computer Architecture and Operating Systems Lecture 12: Input/Output

Andrei Tatarnikov

atatarnikov@hse.ru @andrewt0301

I/O Devices

Human readable

- Suitable for communicating with users
- Video displays, printers
- Machine readable
 - Suitable for communicating with equipment
 - Magnetic disks, SSDs, sensors

Communication

- Suitable for communicating with remote devices such as a terminal or another computer
- Network interface card

I/O Module

Attach to the processor by a link to an I/O module

 The link is used to exchange control, status, and data between the I/O module and the external device

Peripheral device

An external device connected to an I/O module

Control signals determine the function that the device will perform

Data are a set of bits to be sent to or received from the I/O module

Status signals indicate the state of the device

I/O Module Functions

Control and Timing

Coordinates the flow of traffic between internal resources and external devices

Processor Communication

Involves command decoding, data, status reporting, address recognition

Device Communication

Involves commands, status information, and data

Data Buffering

Performs the needed buffering operation to balance device and memory speeds

Error Detection

Detects and reports transmission errors

I/O Module Block Diagram

6

Three Techniques for I/O Operations

Programmed I/O

- Data are exchanged between the processor and the I/O module
- Processor executes a program that gives it direct control of the I/O operation
- When the processor issues a command it must wait until the I/O operation is complete
- If the processor is faster than the I/O module this is wasteful of processor time

Interrupt-driven I/O

Processor issues an I/O command, continues to execute other instructions, and is interrupted by the I/O module when the latter has completed its work

Direct memory access (DMA)

 The I/O module and main memory exchange data directly without processor involvement

I/O Techniques

	No Interrupts	Use of Interrupts
I/O-to-memory transfer through processor	Programmed I/O	Interrupt-driven I/O
Direct I/O-to-memory transfer		Direct memory access (DMA)

I/O Techniques

Direct Memory Access (DMA)

Memory-Mapped I/O (MMIO)

- Processor accesses I/O devices just like memory (like keyboards, monitors, printers)
- Each I/O device assigned one or more address
- When that address is detected, data read/written to I/O device instead of memory
- A portion of the address space dedicated to I/O devices

Key Ideas

- Memory-Mapped I/O is an I/O scheme in which portions of the address space are assigned to I/O devices, and reads and writes to those addresses are interpreted as commands to the I/O device
- Direct Memory Access (DMA) is a mechanism that provides a device controller with the ability to transfer data directly to or from the memory without involving the processor

Key Ideas

Interrupt-Driven I/O is an I/O scheme that employs interrupts to indicate to the processor that an I/O device needs attention

- Polling is the process of periodically checking the status of an I/O device to determine the need to service the device
- Device Driver is a program that controls an I/O device that is attached to the computer

Example: RARS Digital Lab Sim

Seven segment display

Byte value at address Oxffff0010: command right segment display

Byte value at address Oxffff0011: command left segment display

Hexadecimal keyboard

 Byte value at address Oxffff0012: command row number of hexadecimal keyboard (bit 0 to 3) and enable keyboard interrupt (bit 7)

Byte value at address 0xffff0014: receive row and column of the key pressed, 0 if not key pressed

Example: RARS Bitmap Display

15

Any Questions?

