
Computer Architecture and Operating Systems
Lecture 11: Exceptions

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Exception is an unscheduled event that disrupts program
execution
Arises within the CPU

 e.g., undefined opcode, system call, …

 Interrupt is an exception that comes from outside of the
processor
 From an external I/O controller

 Some architectures use the term interrupt for all
exceptions

Exceptions require special system instructions and registers

Dealing with exceptions without sacrificing performance is
hard 2

Exceptions and Interrupts

3

Control and Status Registers

 Control and Status
Registers (CSRs) are
system registers provided
by RISC-V to control
monitor system states

 CSR’s can be read, written
and bits can be
set/cleared

 Each CSR has a special
name and is assigned a
unique function.

 In this course, we focus on
the user privilege level

 We will use user-level
CSRs to handle user-level
exceptions

User Trap Setup
ustatus – User status register
uie – User interrupt-enable register
utvec – User trap handler base address

User Trap Handling
uscratch – Scratch register for user trap handlers
uepc – User exception program counter
ucause – User trap cause
utval – User bad address or instruction
uip – User interrupt pending

4

Main CSR Registers

ebreak – Pause execution (at a breakpoint)

ecall – Execute a system call specified by value in a7

uret – Return from handling an interrupt (to uepc)

wfi – Wait for interrupt

csrrc, csrrci, csrrs, csrrsi, csrrw, csrrwi – Read/write CSR

5

System Instructions

Save PC of offending (or interrupted) instruction
 In RISC-V: User Exception Program Counter (UEPC)

Save indication of the problem
 In RISC-V: User Exception Cause Register (UCAUSE)
32 bits, but most bits unused

 Exception code field: 2 for undefined opcode, 12 for hardware
malfunction, …

Jump to handler
Assume at 1C09 0000hex

6

Handling Exceptions in CPU

Alternate Mechanism: Vectored Interrupts
Handler address determined by the cause

Exception vector address to be added to a vector table
base register:
Undefined opcode 00 0100 0000two

Hardware malfunction: 01 1000 0000two

…: …

Handler instructions either
Deal with the interrupt, or
 Jump to real handler

7

Handling Vectored Exceptions in CPU

Read cause, and transfer to relevant handler

Determine action required

If restartable
Take corrective action
Use UEPC to return to program

Otherwise
Terminate program
Report error using UEPC, UCAUSE, …

8

Handler Actions

Example with a trivial exception handler that just returns to the next instruction.
.text
j main

handler:
Just ignore it by moving uepc to the next instruction
csrrw t0, uepc, zero # load exception PC into t0
addi t0, t0, 4 # increment t0
csrrw zero, uepc, t0 # update exception PC
uret # return to uepc

main:
la t0, handler
csrrw zero, utvec, t0 # set utvec (5) to the handlers address
csrrsi zero, ustatus, 1 # set interrupt enable bit in ustatus (0)
lw zero, 0(zero) # trigger trap for Load access fault

li a7, 10
ecall 9

Trivial Exception Handler

Another form of control hazard
Consider malfunction on add in EX stage
add x1, x2, x1
Prevent x1 from being clobbered
Complete previous instructions
Flush add and subsequent instructions
Set SEPC and SCAUSE register values
Transfer control to handler

Similar to mispredicted branch
Use much of the same hardware

10

Exceptions in a Pipeline

11

Pipeline with Exceptions

Restartable exceptions
Pipeline can flush the instruction
Handler executes, then returns to the instruction

 Refetched and executed from scratch

PC saved in SEPC register
 Identifies causing instruction

12

Exception Properties

Exception on add in
40 sub x11, x2, x4
44 and x12, x2, x5
48 orr x13, x2, x6
4c add x1, x2, x1
50 sub x15, x6, x7
54 ld x16, 100(x7)
…

Handler
1C090000 sd x26, 1000(x10)
1c090004 sd x27, 1008(x10)
…

13

Exception Example

14

Exception Example

15

Exception Example

Pipelining overlaps multiple instructions
Could have multiple exceptions at once

Simple approach: deal with exception from earliest
instruction
Flush subsequent instructions
“Precise” exceptions

In complex pipelines
Multiple instructions issued per cycle
Out-of-order completion
Maintaining precise exceptions is difficult!

16

Multiple Exceptions

Just stop pipeline and save state
 Including exception cause(s)

Let the handler work out
Which instruction(s) had exceptions
Which to complete or flush

 May require “manual” completion

Simplifies hardware, but more complex handler
software

Not feasible for complex multiple-issue
out-of-order pipelines 17

Imprecise Exceptions

Any Questions?

18

