
Computer Architecture and Operating Systems
Lecture 11: Exceptions

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Exception is an unscheduled event that disrupts program
execution
Arises within the CPU

 e.g., undefined opcode, system call, …

 Interrupt is an exception that comes from outside of the
processor
 From an external I/O controller

 Some architectures use the term interrupt for all
exceptions

Exceptions require special system instructions and registers

Dealing with exceptions without sacrificing performance is
hard 2

Exceptions and Interrupts

3

Control and Status Registers

 Control and Status
Registers (CSRs) are
system registers provided
by RISC-V to control
monitor system states

 CSR’s can be read, written
and bits can be
set/cleared

 Each CSR has a special
name and is assigned a
unique function.

 In this course, we focus on
the user privilege level

 We will use user-level
CSRs to handle user-level
exceptions

User Trap Setup
ustatus – User status register
uie – User interrupt-enable register
utvec – User trap handler base address

User Trap Handling
uscratch – Scratch register for user trap handlers
uepc – User exception program counter
ucause – User trap cause
utval – User bad address or instruction
uip – User interrupt pending

4

Main CSR Registers

ebreak – Pause execution (at a breakpoint)

ecall – Execute a system call specified by value in a7

uret – Return from handling an interrupt (to uepc)

wfi – Wait for interrupt

csrrc, csrrci, csrrs, csrrsi, csrrw, csrrwi – Read/write CSR

5

System Instructions

Save PC of offending (or interrupted) instruction
 In RISC-V: User Exception Program Counter (UEPC)

Save indication of the problem
 In RISC-V: User Exception Cause Register (UCAUSE)
32 bits, but most bits unused

 Exception code field: 2 for undefined opcode, 12 for hardware
malfunction, …

Jump to handler
Assume at 1C09 0000hex

6

Handling Exceptions in CPU

Alternate Mechanism: Vectored Interrupts
Handler address determined by the cause

Exception vector address to be added to a vector table
base register:
Undefined opcode 00 0100 0000two

Hardware malfunction: 01 1000 0000two

…: …

Handler instructions either
Deal with the interrupt, or
 Jump to real handler

7

Handling Vectored Exceptions in CPU

Read cause, and transfer to relevant handler

Determine action required

If restartable
Take corrective action
Use UEPC to return to program

Otherwise
Terminate program
Report error using UEPC, UCAUSE, …

8

Handler Actions

Example with a trivial exception handler that just returns to the next instruction.
.text
j main

handler:
Just ignore it by moving uepc to the next instruction
csrrw t0, uepc, zero # load exception PC into t0
addi t0, t0, 4 # increment t0
csrrw zero, uepc, t0 # update exception PC
uret # return to uepc

main:
la t0, handler
csrrw zero, utvec, t0 # set utvec (5) to the handlers address
csrrsi zero, ustatus, 1 # set interrupt enable bit in ustatus (0)
lw zero, 0(zero) # trigger trap for Load access fault

li a7, 10
ecall 9

Trivial Exception Handler

Another form of control hazard
Consider malfunction on add in EX stage
add x1, x2, x1
Prevent x1 from being clobbered
Complete previous instructions
Flush add and subsequent instructions
Set SEPC and SCAUSE register values
Transfer control to handler

Similar to mispredicted branch
Use much of the same hardware

10

Exceptions in a Pipeline

11

Pipeline with Exceptions

Restartable exceptions
Pipeline can flush the instruction
Handler executes, then returns to the instruction

 Refetched and executed from scratch

PC saved in SEPC register
 Identifies causing instruction

12

Exception Properties

Exception on add in
40 sub x11, x2, x4
44 and x12, x2, x5
48 orr x13, x2, x6
4c add x1, x2, x1
50 sub x15, x6, x7
54 ld x16, 100(x7)
…

Handler
1C090000 sd x26, 1000(x10)
1c090004 sd x27, 1008(x10)
…

13

Exception Example

14

Exception Example

15

Exception Example

Pipelining overlaps multiple instructions
Could have multiple exceptions at once

Simple approach: deal with exception from earliest
instruction
Flush subsequent instructions
“Precise” exceptions

In complex pipelines
Multiple instructions issued per cycle
Out-of-order completion
Maintaining precise exceptions is difficult!

16

Multiple Exceptions

Just stop pipeline and save state
 Including exception cause(s)

Let the handler work out
Which instruction(s) had exceptions
Which to complete or flush

 May require “manual” completion

Simplifies hardware, but more complex handler
software

Not feasible for complex multiple-issue
out-of-order pipelines 17

Imprecise Exceptions

Any Questions?

18

