
Computer Architecture and Operating Systems
Lecture 10: Processor and Pipeline

Andrei Tatarnikov
atatarnikov@hse.ru 

@andrewt0301



CPU performance factors
 Instruction count

 Determined by ISA and compiler

 CPI and Cycle time
 Determined by CPU hardware

We will examine two RISC-V implementations
 A simplified version
 A more realistic pipelined version

Simple subset, shows most aspects
Memory reference: ld, sd
 Arithmetic/logical: add, sub, and, or
 Control transfer: beq

2

CPU Under The Hood



PC  instruction memory, fetch instruction

Register numbers register file, read registers

Depending on instruction class

Use ALU to calculate

 Arithmetic result

Memory address for load/store

 Branch comparison

Access data memory for load/store

PC  target address or PC + 4
3

Instruction Execution



4

CPU Overview



5

Multiplexers

 Can’t just join wires together

 Use multiplexers



6

Control



Information encoded in binary
Low voltage = 0, High voltage = 1
One wire per bit
Multi-bit data encoded on multi-wire buses

Combinational element
Operate on data
Output is a function of input

State (sequential) elements
Store information

7

Logic Design Basics



AND-gate
Y = A & B

8

Combinational Elements
Adder
Y = A + B

Arithmetic/Logic Unit
Y = F(A, B)

Multiplexer
Y = S ? I1 : I0

A

B

Y
A

B

Y+

I0

I1
Y

M

u

x

S

A

B

YALU

F



Register: stores data in a circuit
Uses a clock signal to determine when to update the 

stored value
Edge-triggered: update when Clk changes from 0 to 1

9

Sequential Elements

D

Clk

Q
Clk

D

Q



Register with write control
Only updates on clock edge when write control input is 1
Used when stored value is required later

10

Sequential Elements

D

Clk

Q

Write

Write

D

Q

Clk



Combinational logic transforms data during clock 
cycles
Between clock edges
 Input from state elements, output to state element
Longest delay determines clock period

11

Clocking Methodology



Control signals derived from instruction

12

Main Control Unit



13

Datapath With Control



14

R-Type Instruction



15

Load Instruction



16

BEQ Instruction



Longest delay determines clock period

Critical path: load instruction

 Instruction memory  register file  ALU  data 
memory  register file

Not feasible to vary period for different instructions

Violates design principle

Making the common case fast

We will improve performance by pipelining

17

Performance Issues



Response time

How long it takes to do a task

Throughput

Total work done per unit time

18

Response Time and Throughput



Pipelined laundry: overlapping execution
Parallelism improves performance

19

Pipelining Analogy

Four loads:
Speedup

= 8/3.5 = 2.3

Non-stop:
Speedup

= 2n/0.5n + 1.5 ≈ 4
= number of stages



 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

20

RISC-V Pipeline



Assume time for stages is
100ps for register read or write
200ps for other stages

Compare pipelined datapath with single-cycle datapath

21

Pipeline Performance

Instr Instr fetch Register 

read

ALU op Memory 

access

Register 

write

Total time

ld 200ps 100 ps 200ps 200ps 100 ps 800ps

sd 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps



22

Pipeline Performance
Single-Cycle (Tc= 800ps)

Pipelined (Tc= 200ps)



If all stages are balanced
 i.e., all take the same time

Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

If not balanced, speedup is less

Speedup due to increased throughput
Latency (time for each instruction) does not decrease

23

Pipeline Speedup



RISC-V ISA designed for pipelining

All instructions are 32-bits

 Easier to fetch and decode in one cycle

 c.f. x86: 1- to 17-byte instructions

Few and regular instruction formats

 Can decode and read registers in one step

Load/store addressing

 Can calculate address in 3rd stage, access memory in 4th stage

24

Pipelining and ISA Design



Situations that prevent starting the next 
instruction in the next cycle

Structure hazard
A required resource is busy

Data hazard
Need to wait for previous instruction to complete its data 

read/write

Control hazard
Deciding on control action depends on previous 

instruction 25

Hazards



Conflict for use of a resource

In RISC-V pipeline with a single memory

Load/store requires data access

 Instruction fetch would have to stall for that cycle

Would cause a pipeline “bubble”

Hence, pipelined datapaths require separate 
instruction/data memories

Or separate instruction/data caches

26

Structure Hazards



An instruction depends on completion of data access 
by a previous instruction
add x19, x0, x1
sub x2, x19, x3

27

Data Hazards



Use result when it is computed
Don’t wait for it to be stored in a register
Requires extra connections in the datapath

28

Forwarding (aka Bypassing)



Cannot always avoid stalls by forwarding
 If value not computed when needed
Cannot forward backward in time!

29

Load-Use Data Hazard



Reorder code to avoid use of load result in the next 
instruction

C code for a = b + e; c = b + f;

30

Code Scheduling to Avoid Stalls

ld x1, 0(x0)

ld x2, 8(x0)

add x3, x1, x2

sd x3, 24(x0)

ld x4, 16(x0)

add x5, x1, x4

sd x5, 32(x0)

Stall

Stall

ld x1, 0(x0)

ld x2, 8(x0)

ld x4, 16(x0)

add x3, x1, x2

sd x3, 24(x0)

add x5, x1, x4

sd x5, 32(x0)

11 cycles13 cycles



Branch determines flow of control

Fetching next instruction depends on branch outcome

Pipeline can’t always fetch correct instruction

 Still working on ID stage of branch

In RISC-V pipeline

Need to compare registers and compute target early in 
the pipeline

Add hardware to do it in ID stage

31

Control Hazards



Wait until branch outcome determined before 
fetching next instruction

32

Stall on Branch



Longer pipelines cannot readily determine branch 
outcome early

Stall penalty becomes unacceptable

Predict outcome of branch

Only stall if prediction is wrong

In RISC-V pipeline

Can predict branches not taken

Fetch instruction after branch, with no delay

33

Branch Prediction



Static branch prediction
Based on typical branch behavior
Example: loop and if-statement branches

 Predict backward branches taken

 Predict forward branches not taken

Dynamic branch prediction
Hardware measures actual branch behavior

 e.g., record recent history of each branch

Assume future behavior will continue the trend
When wrong, stall while re-fetching, and update history

34

More-Realistic Branch Prediction



Pipelining improves performance by increasing 
instruction throughput

Executes multiple instructions in parallel

Each instruction has the same latency

Subject to hazards

Structure, data, control

Instruction set design affects complexity of pipeline 
implementation

35

Pipeline Summary



ISA influences design of datapath and control

Datapath and control influence design of ISA

Pipelining improves instruction throughput
using parallelism

More instructions completed per second

Latency for each instruction not reduced

Hazards: structural, data, control

36

Conclusion



Any Questions?

37


