
Computer Architecture and Operating Systems
Lecture 9: Virtual Memory

Andrei Tatarnikov
atatarnikov@hse.ru 

@andrewt0301



Use main memory as a “cache” for secondary (disk) 
storage
Managed jointly by CPU hardware and the operating 

system (OS)

Programs share main memory
Each gets a private virtual address space holding its 

frequently used code and data
Protected from other programs

CPU and OS translate virtual addresses to physical 
addresses
VM “block” is called a page
VM translation “miss” is called a page fault 2

Virtual Memory



Virtual addresses
Programs use virtual addresses
Entire virtual address space stored on a hard drive
 Subset of virtual address data in DRAM
CPU translates virtual addresses into physical addresses 

(DRAM addresses)
Data not in DRAM fetched from hard drive

Memory Protection
Each program has own virtual to physical mapping
Two programs can use same virtual address for different data
Programs don’t need to be aware others are running
One program (or virus) can’t corrupt memory used by another 

3

Virtual Address Space



Physical memory acts as cache for virtual memory

4

Cache/Virtual Memory Analogues

Cache Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number



Most accesses hit in physical memory

But programs have a large capacity of virtual memory

5

Virtual and Physical Addresses



Fixed-size pages (e.g., 4K)

6

Address Translation



System
Virtual memory size: 2 GB = 231 bytes
Physical memory size: 128 MB = 227 bytes
Page size: 4 KB = 212 bytes

Organization
Virtual address: 31 bits
Physical address: 27 bits
Page offset: 12 bits
# Virtual pages = 231/212 = 219 (VPN = 19 bits)
# Physical pages = 227/212 = 215 (PPN = 15 bits)

7

Virtual Memory Example



What is the physical address of 
virtual address 0x247C?
 VPN = 0x2

 VPN 0x2 maps to PPN 0x7FFF

 12-bit page offset: 0x47C

 Physical address = 0x7FFF47C

8

Virtual Memory Example



Used to perform address translation
Stores placement information

Array of page table entries, indexed by virtual page 
number

Page table register in CPU points to page table in physical 
memory

If page is present in memory
PTE stores the physical page number
Plus other status bits (referenced, dirty, …)

If page is not present
PTE can refer to location in swap space on disk

9

Page Table



10

Page Mapping



On page fault, the page must be fetched from disk

Takes millions of clock cycles

Handled by OS code

Try to minimize page fault rate

Fully associative placement

Smart replacement algorithms

11

Page Fault Penalty



To reduce page fault rate, prefer least-recently used 
(LRU) replacement
Reference bit (aka use bit) in PTE set to 1 on access to page
Periodically cleared to 0 by OS
A page with reference bit = 0 has not been used recently

Disk writes take millions of cycles
Block at once, not individual locations
Write through is impractical
Use write-back
Dirty bit in PTE set when page is written

12

Replacement and Writes



Address translation would appear to require extra 
memory references
One to access the PTE
Then the actual memory access

But access to page tables has good locality
So use a fast cache of PTEs within the CPU
Called a Translation Look-aside Buffer (TLB)
Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for 

miss, 0.01%–1% miss rate
Misses could be handled by hardware or software

13

Fast Translation Using a TLB



14

Fast Translation Using a TLB



If page is in memory
Load the PTE from memory and retry
Could be handled in hardware

 Can get complex for more complicated page table structures

Or in software
 Raise a special exception, with optimized handler

If page is not in memory (page fault)
OS handles fetching the page and updating the page table
Then restart the faulting instruction

15

TLB Misses



TLB miss indicates
Page present, but PTE not in TLB
Page not preset

Must recognize TLB miss before destination register 
overwritten
Raise exception

Handler copies PTE from memory to TLB
Then restarts instruction
 If page not present, page fault will occur

16

TLB Miss Handler



 If cache tag uses 
physical address
 Need to translate 

before cache lookup

Alternative: use 
virtual address tag
 Complications due to 

aliasing
 Different virtual 

addresses for shared 
physical address

17

TLB and Cache Interaction



Different tasks can share parts of their virtual address 
spaces
But need to protect against errant access
Requires OS assistance

Hardware support for OS protection
Privileged supervisor mode (aka kernel mode)
Privileged instructions
Page tables and other state information only accessible in 

supervisor mode
System call exception (e.g., ecall in RISC-V)

18

Memory Protection



Virtual memory increases capacity

A subset of virtual pages in physical memory

Page table maps virtual pages to physical pages –
address translation

TLB speeds up address translation

Different page tables for different programs provides 
memory protection

19

Virtual Memory Summary



Any Questions?

20


