Faculty ¢

f
Computer
science

Highnr Ssheal of Eranamics

NATIONAL RESEARCH
UNIVERSITY

Computer Architecture and Operating Systems

Lecture 9: Virtual Memory

Andrei Tatarnikov

atatarnikov@hse.ru
@andrewt0301

Virtual Memory

" Use main memory as a “cache” for secondary (disk)
storage

Managed jointly by CPU hardware and the operating
system (OS)
"Programs share main memory

Each gets a private virtual address space holding its
frequently used code and data

Protected from other programs

®"CPU and OS translate virtual addresses to physical
addresses
VM “block” is called a page
VM translation “miss” is called a page fault

Virtual Address Space

" Virtual addresses
Programs use virtual addresses
Entire virtual address space stored on a hard drive
Subset of virtual address data in DRAM

CPU translates virtual addresses into physical addresses
(DRAM addresses)

Data not in DRAM fetched from hard drive

=" Memory Protection
Each program has own virtual to physical mapping
Two programs can use same virtual address for different data
Programs don’t need to be aware others are running
One program (or virus) can’t corrupt memory used by another

Cache/Virtual Memory Analogues

Physical memory acts as cache for virtual memory

Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number

Virtual and Physical Addresses

" Most accesses hit in physical memory

"But programs have a large capacity of virtual memory

Virtual Addresses

Address Translation Physical Addresses

\ Physical Memory

Hard Disk

Address Translation

" Fixed-size pages (e.g., 4K)

Virtual Address
30 2928 ... 141312 11109 ... 210

VPN Page Offset
119
(' Translation) A 1o
{15 L
PPN Page Offset

26 25 24 ... 1312 11109 ... 210
Physical Address

Virtual Memory Example

=System
Virtual memory size: 2 GB = 23! bytes
Physical memory size: 128 MB = 227 bytes

Page size: 4 KB = 212 bytes

="Organization
Virtual address: 31 bits
Physical address: 27 bits
Page offset: 12 bits
Virtual pages = 231/212 =219 (VPN = 19 bits)
Physical pages = 2%7/21% = 213 (PPN = 15 bits)

What is the physical address of

Virtual Memory Example

virtual address 0x247C?
VPN = 0x2
VPN 0x2 maps to PPN Ox7FFF
12-bit page offset: 0x47C
Physical address = Ox7FFF47C

Physical

Page
Number

7FFF
7FFE

0001
0000

Physical Addresses

0x7FFFO00 - Ox7FFFFFF

0x7FFEOQQO - Ox7FFEFFF

0x0001000 - 0x0001FFF

0x0000000 - 0x0000FFF

Physical Memory

Virtual Addresses

0x7FFFF000 - Ox7FFFFFFF

Ox7FFFEQQQ - OX7FFFEFFF

0x7FFFDOQ0OQ - Ox7FFFDFFF

Ox7FFFCO000 - Ox7FFFCFFF

0x7FFFBO0QQ - OX7FFFBFFF

Ox7FFFAQQQ - OX7FFFAFFF

Ox7FFF9000 - OX7FFFOFFF

0x00006000 - 0xO0006FFF

0x00005000 - O0x00005FFF

0x00004000 - 0x0O0004FFF

0x00003000 - OxO0003FFF

0x00002000 - Ox00002FFF

0x00001000 - 0xO0001FFF

0x00000000 - Ox00000FFF

Virtual Memory

Virtual
Page

Number

7FFFF
7FFFE
7FFFD
7FFFC
7FFFB
7FFFA
7FFF9

00006
00005
00004
00003
00002
00001
00000

Page Table

" Used to perform address translation

mStores placement information

Array of page table entries, indexed by virtual page
number

Page table register in CPU points to page table in physical
memory

" |f page is present in memory
PTE stores the physical page number
Plus other status bits (referenced, dirty, ...)

" |f page is not present
PTE can refer to location in swap space on disk e

Page Mapping

Virtual page
number
Page table
Physical page or Physical memory
Valid disk address
1 —
1 .’A
1 —__
3
0 = X
1 ./\/ .
1 — </
0 7 _
1 ¢« </ Disk storage
1 o / T
0 o/ ~
1 ¢« —~—_| ™
\\

Page Fault Penalty

"On page fault, the page must be fetched from disk

Takes millions of clock cycles
Handled by OS code

" Try to minimize page fault rate
Fully associative placement

Smart replacement algorithms

Replacement and Writes

" To reduce page fault rate, prefer least-recently used
(LRU) replacement
Reference bit (aka use bit) in PTE set to 1 on access to page
Periodically cleared to 0 by OS
A page with reference bit = 0 has not been used recently

"Disk writes take millions of cycles
Block at once, not individual locations
Write through is impractical
Use write-back
Dirty bit in PTE set when page is written

Fast Translation Using a TLB

" Address translation would appear to require extra
memory references

One to access the PTE
Then the actual memory access

"But access to page tables has good locality
So use a fast cache of PTEs within the CPU
Called a Translation Look-aside Buffer (TLB)

Typical: 16-512 PTEs, 0.5-1 cycle for hit, 10—100 cycles for
miss, 0.01%—1% miss rate

Misses could be handled by hardware or software

Fast Translation Using a TLB

TLB
Virtual page Physical page
number Valid Dirty Ref Tag address
| |
1(0][1 .
1T[1]A “ Physical memory
T[1][1 ——
~ 101 o«
0[0]0 T~
1(0[1 ~.
Page table
Physical page
Valid Dirty Ref or disk address
/7—‘
~1[(0][1 —
1100 o Disk storage
1(0[0 ol /—g\
1[0 — >
0/0]0 [— A .
1101 - 7 / | |
1(0[1 o / g |
0/0]0 7
111 s~/] |
1(1[1 « / ~_
0/0]0 —
1011 ¢

TLB Misses

" |f page is in memory
Load the PTE from memory and retry

Could be handled in hardware
" Can get complex for more complicated page table structures

Or in software
= Raise a special exception, with optimized handler
" |f page is not in memory (page fault)

OS handles fetching the page and updating the page table
Then restart the faulting instruction

TLB Miss Handler

=" TLB miss indicates
Page present, but PTE not in TLB
Page not preset

" Must recognize TLB miss before destination register

overwritten
Raise exception

"Handler copies PTE from memory to TLB
Then restarts instruction
If page not present, page fault will occur

TLB and Cache Interaction

Virtual address

31 30 29 - correeriiiiiii 14 13 12 11 10 9--------- 3210

[| | f Ca C h e ta g u S e S | \20Virtual page number ‘ Page offsTIi‘12

p hys i Ca I a d d re SS Valid Dirty Tag Physical page number

TLB (Ol
. O
Need to translate TLB it < g:

before cache lookup &=

m A | ternative: use Physical page number | Page offset

Physical address Biock Byte
Physical address tag | Cache index | "o offiet

virtual address tag P

Complications due to
aliasing
= Different virtual cache | | |
addresses for shared
physical address - o

Data

Memory Protection

" Different tasks can share parts of their virtual address
spaces
But need to protect against errant access
Requires OS assistance

"Hardware support for OS protection
Privileged supervisor mode (aka kernel mode)
Privileged instructions

Page tables and other state information only accessible in
supervisor mode

System call exception (e.g., ecall in RISC-V)

Virtual Memory Summary

"\irtual memory increases capacity

" A subset of virtual pages in physical memory

"Page table maps

virtual pages to physical pages —

address translation

=" TLB speeds up ac

dress translation

" Different page ta

oles for different programs provides

memory protection

Any Questions?

. Lext
start: addi tl1l, =zZero, 0x18
addi t2, zZero, O0Ox21
cyvocle: beg tl1, t2Z, done
slt tOo, tl1, t2
bne t0, zZero, if less
nop
sub t1, t1, t2
J cycle
nop
1f less: sub t2, t2, tl
J cycle

done: add t3, tl, zero

