
Computer Architecture and Operating Systems
Lecture 9: Virtual Memory

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Use main memory as a “cache” for secondary (disk)
storage
Managed jointly by CPU hardware and the operating

system (OS)

Programs share main memory
Each gets a private virtual address space holding its

frequently used code and data
Protected from other programs

CPU and OS translate virtual addresses to physical
addresses
VM “block” is called a page
VM translation “miss” is called a page fault 2

Virtual Memory

Virtual addresses
Programs use virtual addresses
Entire virtual address space stored on a hard drive
 Subset of virtual address data in DRAM
CPU translates virtual addresses into physical addresses

(DRAM addresses)
Data not in DRAM fetched from hard drive

Memory Protection
Each program has own virtual to physical mapping
Two programs can use same virtual address for different data
Programs don’t need to be aware others are running
One program (or virus) can’t corrupt memory used by another

3

Virtual Address Space

Physical memory acts as cache for virtual memory

4

Cache/Virtual Memory Analogues

Cache Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number

Most accesses hit in physical memory

But programs have a large capacity of virtual memory

5

Virtual and Physical Addresses

Fixed-size pages (e.g., 4K)

6

Address Translation

System
Virtual memory size: 2 GB = 231 bytes
Physical memory size: 128 MB = 227 bytes
Page size: 4 KB = 212 bytes

Organization
Virtual address: 31 bits
Physical address: 27 bits
Page offset: 12 bits
Virtual pages = 231/212 = 219 (VPN = 19 bits)
Physical pages = 227/212 = 215 (PPN = 15 bits)

7

Virtual Memory Example

What is the physical address of
virtual address 0x247C?
 VPN = 0x2

 VPN 0x2 maps to PPN 0x7FFF

 12-bit page offset: 0x47C

 Physical address = 0x7FFF47C

8

Virtual Memory Example

Used to perform address translation
Stores placement information

Array of page table entries, indexed by virtual page
number

Page table register in CPU points to page table in physical
memory

If page is present in memory
PTE stores the physical page number
Plus other status bits (referenced, dirty, …)

If page is not present
PTE can refer to location in swap space on disk

9

Page Table

10

Page Mapping

On page fault, the page must be fetched from disk

Takes millions of clock cycles

Handled by OS code

Try to minimize page fault rate

Fully associative placement

Smart replacement algorithms

11

Page Fault Penalty

To reduce page fault rate, prefer least-recently used
(LRU) replacement
Reference bit (aka use bit) in PTE set to 1 on access to page
Periodically cleared to 0 by OS
A page with reference bit = 0 has not been used recently

Disk writes take millions of cycles
Block at once, not individual locations
Write through is impractical
Use write-back
Dirty bit in PTE set when page is written

12

Replacement and Writes

Address translation would appear to require extra
memory references
One to access the PTE
Then the actual memory access

But access to page tables has good locality
So use a fast cache of PTEs within the CPU
Called a Translation Look-aside Buffer (TLB)
Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for

miss, 0.01%–1% miss rate
Misses could be handled by hardware or software

13

Fast Translation Using a TLB

14

Fast Translation Using a TLB

If page is in memory
Load the PTE from memory and retry
Could be handled in hardware

 Can get complex for more complicated page table structures

Or in software
 Raise a special exception, with optimized handler

If page is not in memory (page fault)
OS handles fetching the page and updating the page table
Then restart the faulting instruction

15

TLB Misses

TLB miss indicates
Page present, but PTE not in TLB
Page not preset

Must recognize TLB miss before destination register
overwritten
Raise exception

Handler copies PTE from memory to TLB
Then restarts instruction
 If page not present, page fault will occur

16

TLB Miss Handler

 If cache tag uses
physical address
 Need to translate

before cache lookup

Alternative: use
virtual address tag
 Complications due to

aliasing
 Different virtual

addresses for shared
physical address

17

TLB and Cache Interaction

Different tasks can share parts of their virtual address
spaces
But need to protect against errant access
Requires OS assistance

Hardware support for OS protection
Privileged supervisor mode (aka kernel mode)
Privileged instructions
Page tables and other state information only accessible in

supervisor mode
System call exception (e.g., ecall in RISC-V)

18

Memory Protection

Virtual memory increases capacity

A subset of virtual pages in physical memory

Page table maps virtual pages to physical pages –
address translation

TLB speeds up address translation

Different page tables for different programs provides
memory protection

19

Virtual Memory Summary

Any Questions?

20

