
Computer Architecture and Operating Systems
Lecture 8: Memory and Caches

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Computer performance depends on:

Processor performance

Memory performance

2

Processor-Memory Performance Gap

Make memory appear as fast as processor

Ideal memory:

Fast

Cheap (inexpensive)

Large (capacity)

But can only choose two!

3

Memory Challenge

Static RAM (SRAM)
0.5 – 2.5 ns, $500 – $1000 per GB

Dynamic RAM (DRAM)
50 – 70 ns, $10 – $20 per GB

Flash Memory
5 000 – 50 000 ns, $0.75 – $1.00 per GB

Magnetic Disk
5 000 000 – 20 000 000 ns, $0.05 – $0.1 per GB

 Ideal Memory
Access time of SRAM
Capacity and cost/GB of disk

4

Memory Technology

No need for large memory to access it fast
Just exploit locality

Temporal Locality:
Locality in time
 If data used recently, likely to use it again soon
How to exploit: keep recently accessed data in higher

levels of memory hierarchy

Spatial Locality:
Locality in space
 If data used recently, likely to use nearby data soon
How to exploit: when access data, bring nearby data into

higher levels of memory hierarchy too 5

Locality

Memory hierarchy

Store everything on disk

Copy recently accessed (and nearby) items from disk
to smaller DRAM memory

Main memory

Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory

Cache memory attached to CPU
6

Taking Advantage of Locality

7

Memory Hierarchy

Personal mobile
device

Laptop or
desktop

Server

Block (aka line): unit of copying
May be multiple words

If accessed data is present in upper level
Hit: access satisfied by upper level

 Hit ratio: hits/accesses

If accessed data is absent
Miss: block copied from lower level

 Time taken: miss penalty

 Miss ratio: misses/accesses = 1 – hit ratio

 Then accessed data supplied from upper level

8

How It Works?

Processor

L1

L2

Memory

On cache hit, CPU proceeds normally

On cache miss

Stall the CPU pipeline

Fetch block from next level of hierarchy

Instruction cache miss

 Restart instruction fetch

Data cache miss

 Complete data access
9

Hits and Misses

Compulsory: first time data accessed

Capacity: cache too small to hold all data of interest

Conflict: data of interest maps to a location in cache

mapped to different data

10

Miss Types

Hit: data found in that level of memory hierarchy

Miss: data not found (must go to next level)

 Hit Rate = # hits / # memory accesses = 1 – Miss Rate

 Miss Rate = # misses / # memory accesses = 1 – Hit Rate

Average memory access time (AMAT): average time for
processor to access data

 AMAT = tcache + MRcache[tMM + MRMM(tVM)]

11

Memory Performance

Cache memory
The level of the memory hierarchy closest to the CPU

Given accesses X1, …, Xn–1, Xn

12

Cache Memory

How do we know if the
data is present?

Where do we look?

Location determined by address

Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

13

Direct Mapped Cache

#Blocks is a power of 2

Use low-order address bits

Cache

Memory

How do we know which particular block is stored in a
cache location?

Store block address as well as the data

Actually, only need the high-order bits

Called the tag

What if there is no data in a location?

Valid bit: 1 = present, 0 = not present

 Initially 0
14

Tags and Valid Bits

8-blocks, 1 word/block, direct mapped

Initial state

15

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

16

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

17

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

18

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

19

Direct Mapped Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

20

Direct Mapped Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Fully associative
Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)

n-way set associative
Each set contains n entries
Block number determines which set

 (Block number) modulo (#Sets in cache)
Search all entries in a given set at once
n comparators (less expensive)

21

Associative Caches

22

Associative Cache Examples

For a cache with 8 entries

23

Spectrum of Associativity

Compare 4-block caches
Direct mapped, 2-way set associative, fully associative
Block access sequence: 0, 8, 0, 6, 8

Direct mapped

24

Associativity Example

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

2-way set associative

25

Associativity Example

Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Fully associative
Block

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

Increased associativity decreases miss rate

But with diminishing returns

Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000

1-way: 10.3%

2-way: 8.6%

4-way: 8.3%

8-way: 8.1%
26

How Much Associativity

Direct mapped
No choice

Set associative
Prefer non-valid entry, if there is one
Otherwise, choose among entries in the set

Least-recently used (LRU)
Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard beyond that

Random
Gives approximately the same performance as LRU for

high associativity
27

Replacement Policy

On data-write hit, could just update the block in cache
But then cache and memory would be inconsistent

Write through: also update memory
But makes writes take longer

e.g., if base CPI = 1, 10% of instructions are stores, write
to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

Solution: write buffer
Holds data waiting to be written to memory

CPU continues immediately
 Only stalls on write if write buffer is already full 28

Write-Through

Alternative: On data-write hit, just update the block in

cache

Keep track of whether each block is dirty

When a dirty block is replaced

Write it back to memory

Can use a write buffer to allow replacing block to be read

first
29

Write-Back

What should happen on a write miss?

Alternatives for write-through

Allocate on miss: fetch the block

Write around: don’t fetch the block

 Since programs often write a whole block before reading it
(e.g., initialization)

For write-back

Usually fetch the block
30

Write Allocation

Primary cache attached to CPU

Small, but fast

Level-2 cache services misses from primary cache

Larger, slower, but still faster than main memory

Main memory services L-2 cache misses

Some high-end systems include L-3 cache
31

Multilevel Caches

Components of CPU time
Program execution cycles

 Includes cache hit time
Memory stall cycles

 Mainly from cache misses

With simplifying assumptions:

32

Measuring Cache Performance

Memory Accesses
Program

× Miss Rate × Miss PenaltyMemory Stall Cycles =

Instructions
Program

Misses
Instructions × Miss Penalty×=

Given
 I-cache miss rate = 2%
D-cache miss rate = 4%
Miss penalty = 100 cycles
Base CPI (ideal cache) = 2
Load & stores are 36% of instructions

Miss cycles per instruction
 I-cache: 0.02 × 100 = 2
D-cache: 0.36 × 0.04 × 100 = 1.44

Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

33

Cache Performance Example

Hit time is also important for performance

Average memory access time (AMAT)
AMAT = Hit time + Miss rate × Miss penalty

Example
CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20

cycles, I-cache miss rate = 5%
AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction

34

Average Access Time

When CPU performance increased
Miss penalty becomes more significant

Decreasing base CPI
Greater proportion of time spent on memory stalls

Increasing clock rate
Memory stalls account for more CPU cycles

Can’t neglect cache behavior when evaluating system
performance

35

Overal Performance Summary

Matrix Multiplication

36

Example: How Caches Affect Performance

Loop order: i, j, k

for (int i= 0; i < n; i++) {
for (int j= 0; j < n; j++) {
for (int k= 0; k < n; k++) {
C[i][j]+= A[i][k]*B[k][j];

}
}

}

Loop order: i, k, j

for (int i= 0; i < n; i++) {
for (int k= 0; k < n; k++) {
for (int j= 0; j < n; j++) {
C[i][j]+= A[i][k]*B[k][j];

}
}

}

Loop order: j, k, i

for (int j= 0; j < n; j++) {
for (int k= 0; k < n; k++) {
for (int i= 0; i < n; i++) {
C[i][j]+= A[i][k]*B[k][j];

}
}

}

Running time:
13.714264 sec.
Performance:
~ 153 MFLOPS

Running time:
2.739385 sec.
Performance:
~ 795 MFLOPS

Running time:
19.074106 sec.
Performance:
~ 113 MFLOPS

37

Memory Access Patterns
Loop order: i, j, k Loop order: j, k, iLoop order: i, k, j

A A A

B B B

C C C

Any Questions?

38

