Faculty ¢

f
Computer
science

Highnr Ssheal of Eranamics

NATIONAL RESEARCH
UNIVERSITY

Computer Architecture and Operating Systems

Lecture 8: Memory and Caches

Andrei Tatarnikov

atatarnikov@hse.ru
@andrewt0301

Processor-Memory Performance Gap

"Computer performance depends on:
Processor performance
Memory performance

100,000

10, M - .

TOOD - e e e e e e e e e e e e e e e

Performance

FOO Fommmmmm e e e e e e

[T

1 T
1980 1985

I T
1995 2000 2005

I T
2010 2015
Year

T
1990

Memory Challenge

*Make memory appear as fast as processor

"|deal memory:
Fast
Cheap (inexpensive)

Large (capacity)

Memory Technology

= Static RAM (SRAM)
0.5-2.5ns, $500 — $1000 per GB

" Dynamic RAM (DRAM)
50 —-70ns, $10 — $20 per GB

" Flash Memory
5 000 — 50 000 ns, $0.75 — $1.00 per GB

=" Magnetic Disk
5 000 000 — 20 000 000 ns, S0.05 — S0.1 per GB
" |deal Memory

Access time of SRAM
Capacity and cost/GB of disk

No need for large memory to access it fast
Just exploit locality

"Temporal Locality:
Locality in time
f data used recently, likely to use it again soon

How to exploit: keep recently accessed data in higher
evels of memory hierarchy

=Spatial Locality:
_ocality in space
f data used recently, likely to use nearby data soon

How to exploit: when access data, bring nearby data into
nigher levels of memory hierarchy too e

Taking Advantage of Locality

" Memory hierarchy
mStore everything on disk

" Copy recently accessed (and nearby) items from disk
to smaller DRAM memory

Main memory

" Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory

Cache memory attached to CPU

emory Hierarchy

Memory
bus

Storage

oo 0O

CPU
Flash

[]
= Personal mobile nz
[]
Register Level 1 Level 2 Memory n}emory
e V I C e reference Cache Cache reference feferefice:

reference reference

Size: 1000 bytes 64 KB 256 KB 1-2GB 4-64 GB
Speed: 300 ps 1ns 5-10 ns 50-100 ns 25-50 us

Memory

CPU bus

Storage

o> o000
=
®>o o 05

Flash

: memory
. L a t O O r Register Level 1 Level 2 Level 3 Memory reforence
reference Cache Cache Cache reference

reference reference reference

Laptop Size: 1000 bytes 64KB 256KB 4-8MB 4-16 GB 256 GB-1TB

e S t O Speed: 300 ps 1ns 3-10ns 10-20ns 50-100 ns 50-100 uS
Desktop Size: 2000 bytes 64KB 256KB 832 MB 8-64 GB 256 GB-2 TB

Speed: 300 ps 1ns 3-10ns 10-20ns 50-100 ns 50-100 uS

L2 L3
C c | Memory Disk storage
1/0 bus
CPU a a bus Memory
5 :
< e Flash storage
Register Level 1 Level 2 Level 3 Memory
. reference Cache Cache Cache reference Disk Flash
e r V e r reference reference reference mfemory mfemory
reference reference
Size: 4000 bytes 64 KB 256 KB 16-64 MB 32-256 GB
16-64TB 1-16 TB
Speed: 200 ps 1ns 3-10ns 10-20ns 50-100 ns 5-10ms 100-200 us

How It Works?

"Block (aka line): unit of copying
May be multiple words

" |f accessed data is present in upper level
Hit: access satisfied by upper level
= Hit ratio: hits/accesses
" |f accessed data is absent

Miss: block copied from lower level
" Time taken: miss penalty

Processor

LI#

L2

= Miss ratio: misses/accesses = 1 — hit ratio
Then accessed data supplied from upper level

Memory

®"On cache hit, CPU proceeds normally

®"On cache miss
Stall the CPU pipeline
Fetch block from next level of hierarchy

Instruction cache miss

= Restart instruction fetch

Data cache miss

=" Complete data access

Miss Types

: first time data accessed

: cache too small to hold all data of interest

. data of interest maps to a location in cache

mapped to different data

Memory Performance

= Hit: data found in that level of memory hierarchy

" Miss: data not found (must go to next level)
Hit Rate =# hits /# memory accesses =1 — Miss Rate
Miss Rate = # misses / # memory accesses = 1 — Hit Rate

" Average memory access time (AMAT): average time for
processor to access data

AMAT = tcache + MRcache[tMM + MRMM(tVM)]

Cache Memory

®"Cache memory
The level of the memory hierarchy closest to the CPU

"Given accesses Xy, ..., X__;, X,
X4 X4
X, X; .
. . "How do we know if the
data is present?
Xn-1)
X . =\Where do we look?
Xn
X3 X3

a. Before the reference to X,, Db. After the reference to X,

Direct Mapped Cache

" ocation determined by address

"Direct mapped: only one choice

(Block address) modulo (#Blocks in cache)

=#Blocks is a power of 2

= Use low-order address bits

|

00001 00101 01001 01101 10001 10101 11001 11101 @

Tags and Valid Bits

"How do we know which particular block is stored in a

cache location?

Store block address as well as the data

Actually, only need the high-order bits

Called the tag

"\What if there is no data in a location?
Valid bit: 1 = present, O = not present
Initially O

Direct Mapped Cache Example

=8-blocks, 1 word/block, direct mapped

®|nitial state

Index

Tag

Data

000

001

010

011

100

101

110

ZlIZ2|1Z2|1Z2|1Z2|Z2(Z2|2|<

111

Direct Mapped Cache Example

Word addr

Binary addr

Hit/miss

Cache block

22

10 110

Miss

110

Index

Tag Data

000

001

010

011

100

101

110

10 Mem|[10110]

111

zlI<|Z2|1Z2|Z2|Z2|Z2|Z2]|<

Direct Mapped Cache Example

Word addr

Binary addr

Hit/miss

Cache block

26

11 010

Miss

010

Index

Tag Data

000

001

010

11 Mem{[11010]

011

100

101

110

10 Mem[10110]

111

Z|I<|Z|IZ|Z2|X|Z2[Z2|<

Direct Mapped Cache Example

Word addr Binary addr Hit/miss | Cache block

22 10 110 Hit 110
26 11 010 Hit 010

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Direct Mapped Cache Example

Word addr Binary addr Hit/miss | Cache block

16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

Index \% Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Direct Mapped Cache Example

Word addr Binary addr Hit/miss | Cache block

18 10 010 Miss 010

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Associative Caches

" Fully associative
Allow a given block to go in any cache entry
Requires all entries to be searched at once

Comparator per entry (expensive)

"n-way set associative
Each set contains n entries
Block number determines which set
" (Block number) modulo (#Sets in cache)
Search all entries in a given set at once
n comparators (less expensive)

Associative Cache Examples

Direct mapped Set associative Fully associative

Block# 01234567 Set# 0 1 2 3

Data Data Data

1 1
Ta
J 2

L o TTTT11T]

Tag Tag

Spectrum of Associativity

="For a cache with 8 entries

One-way set associative

(direct mapped)
Block Tag Data
0
1 Two-way set associative
5 Set Tag Data Tag Data
3 0
4 1
2
5
5 3
7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Associativity Example

"Compare 4-block caches
Direct mapped, 2-way set associative, fully associative
Block access sequence: 0, 8,0, 6, 8

"Direct mapped

Block Cache | Hit/miss Cache content after access
address | index 0 1 2 3
0 0 miss Mem|[O]
8 0 miss Mem|[8]
0 0 miss Mem|[O]
6 2 miss Mem][0] Mem|[6]
8 0 miss Mem|[8] Mem[6]

Associativity Example

= 2-way set associative

" Fully associative

Block Cache | Hit/miss Cache content after access
address | index Set 0 Setl

0 0 MIss Mem|[O0]

8 0 miss Mem[0] | Mem]|8]

0 0 hit Mem[0] | Mem|[8]

6 0 miss Mem[0] | Mem|[6]

8 0 miss Mem[8] | Mem[6]
Block Hit/miss Cache content after access
address

0 MIsS Mem|[O]

8 MIsS Mem[0] | Mem|&]

0 hit Mem[O] | Mem|[8]

6 Mmiss Mem[0] | Mem[8] | Mem|6]

8 hit Mem[O] | Mem[8] | Mem|[6]

How Much Associativity

" |ncreased associativity decreases miss rate

But with diminishing returns

=Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000

1-way: 10.3%
2-way: 8.6%
4-way: 8.3%
8-way: 8.1%

Replacement Policy

"Direct mapped
No choice

=Set associative
Prefer non-valid entry, if there is one
Otherwise, choose among entries in the set

" east-recently used (LRU)
Choose the one unused for the longest time
= Simple for 2-way, manageable for 4-way, too hard beyond that
"Random

Gives approximately the same performance as LRU for
high associativity Q

Write-Through

"On data-write hit, could just update the block in cache
But then cache and memory would be inconsistent

"\Write through: also update memory

"But makes writes take longer
e.g., if base CPI =1, 10% of instructions are stores, write

to memory takes 100 cycles
= Effective CPI=1+0.1x100=11

=Solution: write buffer

Holds data waiting to be written to memory

CPU continues immediately
" Only stalls on write if write buffer is already full @

= Alternative: On data-write hit, just update the block in

cache

Keep track of whether each block is dirty

"\When a dirty block is replaced

Write it back to memory

Can use a write buffer to allow replacing block to be read
first

Write Allocation

="\What should happen on a write miss?

" Alternatives for write-through

Allocate on miss: fetch the block

Write around: don’t fetch the block

= Since programs often write a whole block before reading it
(e.g., initialization)

"For write-back
Usually fetch the block

Multilevel Caches

"Primary cache attached to CPU

Small, but fast

" evel-2 cache services misses from primary cache

Larger, slower, but still faster than main memory

" Main memory services L-2 cache misses

"Some high-end systems include L-3 cache

Measuring Cache Performance

"Components of CPU time
Program execution cycles
" Includes cache hit time

Memory stall cycles
" Mainly from cache misses

= \With simplifying assumptions:

Memory Accesses

Memory Stall Cycles = X Miss Rate x Miss Penalty

Program
Instructions Misses ,
= ——— X ———— X Miss Penalty
Program Instructions

Cache Performance Example

=(Gjven
|-cache miss rate = 2%
D-cache miss rate = 4%
Miss penalty = 100 cycles
Base CPI (ideal cache) =2
Load & stores are 36% of instructions

" Miss cycles per instruction
I-cache: 0.02 x 100 = 2
D-cache: 0.36 x 0.04 x 100 =1.44

mActualCPl=2+2+1.44=5.44
Ideal CPU is 5.44/2 =2.72 times faster

Average Access Time

"Hit time is also important for performance

" Average memory access time (AMAT)
AMAT = Hit time + Miss rate X Miss penalty

"Example

CPU with 1ns clock, hit time =1 cycle, miss penalty = 20
cycles, I-cache miss rate = 5%

AMAT =1+ 0.05 X 20 = 2ns

= 2 cycles per instruction

Overal Performance Summary

"\WWhen CPU performance increased
Miss penalty becomes more significant

"Decreasing base CPI
Greater proportion of time spent on memory stalls

"|ncreasing clock rate
Memory stalls account for more CPU cycles

"Can’t neglect cache behavior when evaluating system
performance

Example: How Caches Affect Performance

Loop order: i, j, k

for (int i= 0; 1 < n; i++) {
for (int j= 0; j < n; j++) {
for (int k= 0; k < n; k++) {
C[i][J]+= A[1][k]*B[k][]];
}
}
}

Loop order: i, Kk, j

for (int i= 0; i < n; i++) {
for (int k= 0; k < n; k++) {
for (int j= 0; j < n; j++) {
C[i][j]+= A[i][k]*B[k][]];
}
}
¥

Loop order: j, kK, i

for (int j= 0; j < n; j++) {
for (int k= 0; k < n; k++) {
for (int i= 9; i < n; i++) {
C[i][j]+= A[1i][k]*B[k][]];
}
}
}

Running time:
13.714264 sec.
Performance:

~ 153 MFLOPS

Running time:
2.739385 sec.
Performance:
~ 795 MFLOPS

Running time:
19.074106 sec.
Performance:

~ 113 MFLOPS

Memory Access Patterns

Loop order: i, j, k Loop order: i, k, Loop order: j, k, i

A A [T A

C N C C

Any Questions?

. Lext
start: addi tl1l, =zZero, 0x18
addi t2, zZero, O0Ox21
cyvocle: beg tl1, t2Z, done
slt tOo, tl1, t2
bne t0, zZero, if less
nop
sub t1, t1, t2
J cycle
nop
1f less: sub t2, t2, tl
J cycle

done: add t3, tl, zero

