
Computer Architecture and Operating Systems
Lecture 8: Memory and Caches

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

Computer performance depends on:

Processor performance

Memory performance

2

Processor-Memory Performance Gap

Make memory appear as fast as processor

Ideal memory:

Fast

Cheap (inexpensive)

Large (capacity)

But can only choose two!

3

Memory Challenge

Static RAM (SRAM)
0.5 – 2.5 ns, $500 – $1000 per GB

Dynamic RAM (DRAM)
50 – 70 ns, $10 – $20 per GB

Flash Memory
5 000 – 50 000 ns, $0.75 – $1.00 per GB

Magnetic Disk
5 000 000 – 20 000 000 ns, $0.05 – $0.1 per GB

 Ideal Memory
Access time of SRAM
Capacity and cost/GB of disk

4

Memory Technology

No need for large memory to access it fast
Just exploit locality

Temporal Locality:
Locality in time
 If data used recently, likely to use it again soon
How to exploit: keep recently accessed data in higher

levels of memory hierarchy

Spatial Locality:
Locality in space
 If data used recently, likely to use nearby data soon
How to exploit: when access data, bring nearby data into

higher levels of memory hierarchy too 5

Locality

Memory hierarchy

Store everything on disk

Copy recently accessed (and nearby) items from disk
to smaller DRAM memory

Main memory

Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory

Cache memory attached to CPU
6

Taking Advantage of Locality

7

Memory Hierarchy

Personal mobile
device

Laptop or
desktop

Server

Block (aka line): unit of copying
May be multiple words

If accessed data is present in upper level
Hit: access satisfied by upper level

 Hit ratio: hits/accesses

If accessed data is absent
Miss: block copied from lower level

 Time taken: miss penalty

 Miss ratio: misses/accesses = 1 – hit ratio

 Then accessed data supplied from upper level

8

How It Works?

Processor

L1

L2

Memory

On cache hit, CPU proceeds normally

On cache miss

Stall the CPU pipeline

Fetch block from next level of hierarchy

Instruction cache miss

 Restart instruction fetch

Data cache miss

 Complete data access
9

Hits and Misses

Compulsory: first time data accessed

Capacity: cache too small to hold all data of interest

Conflict: data of interest maps to a location in cache

mapped to different data

10

Miss Types

Hit: data found in that level of memory hierarchy

Miss: data not found (must go to next level)

 Hit Rate = # hits / # memory accesses = 1 – Miss Rate

 Miss Rate = # misses / # memory accesses = 1 – Hit Rate

Average memory access time (AMAT): average time for
processor to access data

 AMAT = tcache + MRcache[tMM + MRMM(tVM)]

11

Memory Performance

Cache memory
The level of the memory hierarchy closest to the CPU

Given accesses X1, …, Xn–1, Xn

12

Cache Memory

How do we know if the
data is present?

Where do we look?

Location determined by address

Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

13

Direct Mapped Cache

#Blocks is a power of 2

Use low-order address bits

Cache

Memory

How do we know which particular block is stored in a
cache location?

Store block address as well as the data

Actually, only need the high-order bits

Called the tag

What if there is no data in a location?

Valid bit: 1 = present, 0 = not present

 Initially 0
14

Tags and Valid Bits

8-blocks, 1 word/block, direct mapped

Initial state

15

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

16

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

17

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

18

Direct Mapped Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

19

Direct Mapped Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

20

Direct Mapped Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Fully associative
Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)

n-way set associative
Each set contains n entries
Block number determines which set

 (Block number) modulo (#Sets in cache)
Search all entries in a given set at once
n comparators (less expensive)

21

Associative Caches

22

Associative Cache Examples

For a cache with 8 entries

23

Spectrum of Associativity

Compare 4-block caches
Direct mapped, 2-way set associative, fully associative
Block access sequence: 0, 8, 0, 6, 8

Direct mapped

24

Associativity Example

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

2-way set associative

25

Associativity Example

Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Fully associative
Block

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

Increased associativity decreases miss rate

But with diminishing returns

Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000

1-way: 10.3%

2-way: 8.6%

4-way: 8.3%

8-way: 8.1%
26

How Much Associativity

Direct mapped
No choice

Set associative
Prefer non-valid entry, if there is one
Otherwise, choose among entries in the set

Least-recently used (LRU)
Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard beyond that

Random
Gives approximately the same performance as LRU for

high associativity
27

Replacement Policy

On data-write hit, could just update the block in cache
But then cache and memory would be inconsistent

Write through: also update memory
But makes writes take longer

e.g., if base CPI = 1, 10% of instructions are stores, write
to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

Solution: write buffer
Holds data waiting to be written to memory

CPU continues immediately
 Only stalls on write if write buffer is already full 28

Write-Through

Alternative: On data-write hit, just update the block in

cache

Keep track of whether each block is dirty

When a dirty block is replaced

Write it back to memory

Can use a write buffer to allow replacing block to be read

first
29

Write-Back

What should happen on a write miss?

Alternatives for write-through

Allocate on miss: fetch the block

Write around: don’t fetch the block

 Since programs often write a whole block before reading it
(e.g., initialization)

For write-back

Usually fetch the block
30

Write Allocation

Primary cache attached to CPU

Small, but fast

Level-2 cache services misses from primary cache

Larger, slower, but still faster than main memory

Main memory services L-2 cache misses

Some high-end systems include L-3 cache
31

Multilevel Caches

Components of CPU time
Program execution cycles

 Includes cache hit time
Memory stall cycles

 Mainly from cache misses

With simplifying assumptions:

32

Measuring Cache Performance

Memory Accesses
Program

× Miss Rate × Miss PenaltyMemory Stall Cycles =

Instructions
Program

Misses
Instructions × Miss Penalty×=

Given
 I-cache miss rate = 2%
D-cache miss rate = 4%
Miss penalty = 100 cycles
Base CPI (ideal cache) = 2
Load & stores are 36% of instructions

Miss cycles per instruction
 I-cache: 0.02 × 100 = 2
D-cache: 0.36 × 0.04 × 100 = 1.44

Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

33

Cache Performance Example

Hit time is also important for performance

Average memory access time (AMAT)
AMAT = Hit time + Miss rate × Miss penalty

Example
CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20

cycles, I-cache miss rate = 5%
AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction

34

Average Access Time

When CPU performance increased
Miss penalty becomes more significant

Decreasing base CPI
Greater proportion of time spent on memory stalls

Increasing clock rate
Memory stalls account for more CPU cycles

Can’t neglect cache behavior when evaluating system
performance

35

Overal Performance Summary

Matrix Multiplication

36

Example: How Caches Affect Performance

Loop order: i, j, k

for (int i= 0; i < n; i++) {
for (int j= 0; j < n; j++) {
for (int k= 0; k < n; k++) {
C[i][j]+= A[i][k]*B[k][j];

}
}

}

Loop order: i, k, j

for (int i= 0; i < n; i++) {
for (int k= 0; k < n; k++) {
for (int j= 0; j < n; j++) {
C[i][j]+= A[i][k]*B[k][j];

}
}

}

Loop order: j, k, i

for (int j= 0; j < n; j++) {
for (int k= 0; k < n; k++) {
for (int i= 0; i < n; i++) {
C[i][j]+= A[i][k]*B[k][j];

}
}

}

Running time:
13.714264 sec.
Performance:
~ 153 MFLOPS

Running time:
2.739385 sec.
Performance:
~ 795 MFLOPS

Running time:
19.074106 sec.
Performance:
~ 113 MFLOPS

37

Memory Access Patterns
Loop order: i, j, k Loop order: j, k, iLoop order: i, k, j

A A A

B B B

C C C

Any Questions?

38

