
Computer Architecture and Operating Systems
Lecture 6: Assembly Programming – Stack

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

2

Program Structure and Memory Layout

Stack

Dynamic Data

.data

.text

Reserved
0x 0040 0000

0x 0000 0000

0x 1001 0000

0x 7FFF EFFC
 .text
main:
 li a7, 5
 ecall
 # function call
 func(a0)
 li a7, 10
 ecall
 # function
func:
 # do something
 return a0

0x1004 0000

Local variables
Temp values

Housekeeping

Function (procedure) is a code that performs some task
based on the arguments with which it is provided

Caller is a code that calls a function and provides it with
the necessary arguments

Callee is a function that executes instructions based on
arguments provided by the caller and then returns control
to the caller

Return address is a link that allows the callee to return
control to the caller

Jump-and-link instruction is an instruction that branches
to an address and simultaneously saves the address of the
next instruction in to a register 3

Notion of Function

Place arguments in registers a0 (x10) to a7 (x17)

 Save return address in ra (x1) and jump to function

Allocate stack memory for the function

Perform function's operations

Free stack memory allocated for the function

Place result in register a0 for caller

Return to place of call (address in ra)

4

Function Call Steps

5

RISC-V Register Conventions
Register Name Use Saver

x0 zero constant 0 n/a

x1 ra return address caller

x2 sp stack pointer callee

x3 gp global pointer

x4 tp thread pointer

x5-x7 t0-t2 temporaries caller

x8 s0/fp saved/ frame pointer callee

x9 s1 saved callee

x10-x17 a0-a7 arguments caller

x18-x27 s2-s11 saved callee

x28-x31 t3-t6 temporaries caller

Function call: jump and link
 jal ra, FunctionLabel (UJ-type)

Address of the next instruction is put in ra (x1)
 Jumps to target address

Function return: jump and link register
 jalr zero, 0(ra) (I-type)

Like jal, but jumps to 0 + address in ra (x1)
Use zero (x0) as rd (zero cannot be changed)
Can also be used for computed jumps
 e.g., for case/switch statements 6

Jump-and-Link Instructions

j label # Jump to label and do not save return address

jal label # Jump to label and set return address to ra

jalr t0 # Jump to address in t0 and set return address to ra

jalr t0, -100 # Jump to address t0-100 and set return address to ra

jr t0 # Jump Register: Jump to address in t0

jr t0, -100 # Jump Register: Jump to address t0-100

7

Jump-and-Link Pseudo Instructions

Stack is a data structure for spilling registers organized
as a last-in-first-out queue

Dynamic memory for storing data (such as local
variables) for function calls is organized as a task

Stack pointer is a value denoting the most recently
allocated address on the stack

Push means to add element to stack

Pop means to remove element from stack

8

Stack

9

Local Data on Stack

Local data allocated by callee
Local variables, arrays, etc.

Function frame (activation record)
Segment of stack containing function’s saved registers

and local variables

A function can overwrite values of registers.
Sometimes is undesirable. There are special rules to

handle this issues. They specify who is responsible for
saving the registers.

Callee-saved register is a register saved by the routine
being called

Caller-saved register is register saved by the routine
making a function call

10

Saving Registers

int leaf_example (int g, int h, int i, int j) {

 int f = (g + h) - (i + j);

 return f;

}

Requirements:

 arguments g, ..., j in a0 (x10)...a3 (x13)

 f in s4 (x20)

 temporaries t0 (x5), t1 (x6)

need to save t0, t1, s4 on stack

11

Function Example

leaf_example:
 addi sp, sp, -12
 sw t0, 8(sp)
 sw t1, 4(sp)
 sw s4, 0(sp)
 add t0, a0, a1
 add t1, a2, a3
 sub s4, t0, t1
 mv a0, s4
 lw s4, 0(sp)
 lw t1, 4(sp)
 lw t0, 8(sp)
 addi sp, sp, 12
 jalr x0, 0(ra)

12

Function Assembly Code
main:
 read_int(t0) # read g
 read_int(t1) # read h
 read_int(t2) # read i
 read_int(t3) # read j
 mv a0, t0
 mv a1, t1
 mv a2, t2
 mv a3, t3
 jal ra, leaf_example
 mv t4, a0
 print_int(t0, t1, t2, t3, t4)
 li a7, 10
 ecall

Preserve registers:
 addi sp, sp, -20 # make room on stack for 5 registers
 sw ra, 16(sp) # save ra (x1) on stack
 sw s1, 12(sp) # save s1 (x9) on stack
 sw s2, 8(sp) # save s2 (x18) on stack
 sw s3, 4(sp) # save s3 (x19) on stack
 sw s4, 0(sp) # save s4 (x20) on stack

Restore registers:
 lw s4, 0(sp) # restore s4 (x20) from stack
 lw s3, 4(sp) # restore s3 (x19) from stack
 lw s2, 8(sp) # restore s2 (x18) from stack
 lw s1, 12(sp) # restore s1 (x9) from stack
 lw ra, 16(sp) # restore ra (x1) from stack
 addi sp, sp, 20 # restore stack pointer
 jalr zero, 0(ra) # return to caller

13

Preserving Callee-Saved Registers

Preserve registers:
 addi sp, sp, -16 # make room on stack for 4 registers
 sw t0, 12(sp) # save t0 (x5) on stack
 sw t1, 8(sp) # save t1 (x6) on stack
 sw t2, 4(sp) # save t2 (x7) on stack
 sw t3, 0(sp) # save t3 (x28) on stack
 jal ra, callee # jump to callee

Restore registers:
 lw t3, 0(sp) # restore t3 (x28) from stack
 lw t2, 4(sp) # restore t2 (x7) from stack
 lw t1, 8(sp) # restore t1 (x6) from stack
 lw t0, 12(sp) # restore t0 (x5) from stack
 addi sp, sp, 16 # restore stack pointer 14

Preserving Caller-Saved Registers

int fact (int n) {
 if (n < 1) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

15

Recursive Function Example
fact:
 addi t0, a0, -1
 bgez t0, fact_else
 li a0, 1
 jalr zero, 0(ra)
fact_else:
 addi sp, sp, -8
 sw ra, 4(sp)
 sw a0, 0(sp)
 addi a0, a0, -1
 jal ra, fact
 mv t1, a0
 lw a0, 0(sp)
 lw ra, 4(sp)
 addi sp, sp, 8
 mul a0, a0, t1
 jalr zero, 0(ra)

Frame pointer is a value denoting the location of the
saved registers and local variables for a given
procedure. Simplifies programming because when
stack-pointer changes programmers have to use
different offsets to access the same values.

16

Frame Pointer

main:
 mv fp, sp
 jal ra, func
 li a7, 10
 ecall
func:
 addi sp, sp, -4
 li t0, 1
 sw t0, 0(sp)
 addi sp, sp, -4
 li t0, 2
 sw t0, 0(sp)
 addi sp, sp, -4
 li t0, 3
 sw t0, 0(sp)
 lw t0, 0(fp)
 print_int(t0)
 lw t0, -4(fp)
 print_int(t0)
 lw t0, -8(fp)
 print_int(t0)
 addi sp, sp, 12
 jalr zero, 0(ra) 17

Using Frame Pointer

system call “exit”

return

frame pointer initialization
function call

sp-relative stores

fp-relative loads

Any Questions?

18

