Faculty (°

Computer
science

Highar Ssbseel of Eranomics

NATIONAL RESEARCH
UNIVERSITY

Computer Architecture and Operating Systems

Lecture 6: Assembly Programming — Stack

Andrei Tatarnikov

atatarnikov@hse.ru
@andrewt0301

Program Structure and Memory Layout
Ox 7FFF EFFC

text ====20 o= " T== i
main: ,’ Local varlables N StiCk
lia7, 5 (Temp values /l
\
ecall Housekeepmg 7 *
Tem—g---" D ic Dat
function call 0x1004 0000 LEYNamic Data
p - func(a0) ot
iaz 10 0x 1001 0000 — o
ecall X
function —> text
> func: _ 0x 0040 0000
do somethin /
5 0x 0000 0000
return a0. a

Notion of Function

(procedure) is a code that performs some task
based on the arguments with which it is provided

is a code that calls a function and provides it with
the necessary arguments

is a function that executes instructions based on
arguments provided by the caller and then returns control
to the caller

is a link that allows the callee to return
control to the caller

IS an instruction that branches
to an address and simultaneously saves the address of the
next instruction in to a register e

Function Call Steps

"Place arguments in registers a0 (x10) to a7 (x17)

" Save return address in ra (x1) and jump to function
" Allocate stack memory for the function

"Perform function's operations

" Free stack memory allocated for the function

"Place result in register a0 for caller

"Return to place of call (address in ra)

RISC-V Register Conventions

Register Use Saver
x0 zero constant 0 n/a
x1 ral return address caller
X2 sp stack pointer callee
x3 gp global pointer
x4 tp thread pointer

X5-x7 t0-t2 temporaries caller
x8 s0/fp saved/ frame pointer callee
x9 sl saved callee

x10-x17 a0-a7 arguments caller
x18-x27 s2-s11 saved callee
x28-x31 t3-t6 temporaries caller

Jump-and-Link Instructions

"Function call: jump and link
jal ra, FunctionLabel (UJ-type)

Address of the next instruction is put in ra (x1)
Jumps to target address

" Function return: jump and link register
jalr zero, 0(ra) (I-type)

Like jal, but jumps to O + address in ra (x1)
Use zero (x0) as rd (zero cannot be changed)

Can also be used for computed jumps
= e.g., for case/switch statements

Jump-and-Link Pseudo Instructions

j label # Jump to label and do not save return address

jal label # Jump to label and set return address to ra

jalr tO # Jump to address in t0 and set return address to ra

jalr t0, -100 # Jump to address t0-100 and set return address to ra
jr tO # Jump Register: Jump to address in t0

jr t0, -100 # Jump Register: Jump to address t0-100

is a data structure for spilling registers organized
as a last-in-first-out queue

"Dynamic memory for storing data (such as
) for function calls is organized as a task

is a value denoting the most recently
allocated address on the stack

means to add element to stack
means to remove element from stack

Local Data on Stack

High address

FP — FP —

SP - SP—
FP —

Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and
sp —~ | structures (if any)

Low address

(@) (b) (c)
" ocal data allocated by callee
Local variables, arrays, etc.

" Function frame (activation record)

Segment of stack containing function’s saved registers
and local variables

Saving Registers

A function can overwrite values of registers.
Sometimes is undesirable. There are special rules to
handle this issues. They specify who is responsible for
saving the registers.

Is a register saved by the routine
being called

s register saved by the routine
making a function call

Function Example

int leaf_example (int g, int h, int i, int j) {
intf=(g+h)-(i+j);
return f;

}

Requirements:

"arguments g, ..., jin a0 (x10)...a3 (x13)
= fin s4 (x20)

" temporaries t0 (x5), t1 (x6)

=" need to save t0, t1, s4 on stack

Function Assembly Code

main:
read_int(t0) # read g
read_int(tl) # read h
read_int(t2) # read i
read_int(t3) # read |
mv a0, t0
mv al, tl
mv a2, t2
mv a3, t3
jal ra, leaf _example
mv t4, a0
print_int(tO, t1, t2, t3, t4)
lia7, 10
ecall

leaf example:
addi sp, sp, -12
sw t0, 8(sp)
sw t1, 4(sp)
sw s4, 0(sp)
add t0, a0, al
add t1, a2, a3
sub s4, t0, t1
mv a0, s4

w s4, 0(sp)

w t1, 4(sp)

w 10, 8(sp)

addi sp, sp, 12

jalr x0, O(ra) Q

Preserving Callee-Saved Registers

= Preserve registers:
addi sp, sp, -20 # make room on stack for 5 registers

SW
SW
SW
SW
SW

ra, 16(sp) # save ra (x1) on stack
s1, 12(sp) # save sl (x9) on stack
s2, 8(sp) # save s2 (x18) on stack
s3, 4(sp) # save s3 (x19) on stack
s4, O(sp) # save s4 (x20) on stack

= Restore registers:

W
W
W
W
W

s4, O(sp) # restore s4 (x20) from stack
s3, 4(sp) # restore s3 (x19) from stack
s2, 8(sp) # restores2 (x18) from stack
s1, 12(sp) # restore sl (x9) from stack
ra, 16(sp) # restore ra (x1) from stack

addi sp, sp, 20 # restore stack pointer
jalr zero, O(ra) # return to caller

Preserving Caller-Saved Registers

=Preserve registers:
addi sp, sp, -16 # make room on stac

sw t0, 12(sp)

sw t1, 8(sp)
sw t2, 4(sp)
sw t3, O(sp)

save t0 (x5) on stack
save t1 (x6) on stack
save t2 (x7) on stack
save t3 (x28) on stack

jal ra, callee # jump to callee

=Restore registers:
restore t3 (x28) from stack

lw t3, O(sp)
w t2, 4(sp)
w tl, 8(sp)
w t0, 12(sp)
addi sp, sp, 16

restore t2 (x7) from stac
restore t1 (x6) from stac
restore t0 (x5) from stac
restore stack pointer

 for 4 registers

¢
K

K

Recursive Function Example

fact:

int fact (int n)
if (n<1){
return 1;
} else {
return n * fact(n - 1);

} ~

J

addi tO, a0, -1
ogez t0, fact_else
| a

alr zero, O(ra)

/ . O' l
act_else:
4 addi

sp, sp, -8

4(sp)
SW aO O(sp)
addi aO a0, -1
jal ra, fact

SW

mv t1 a0

W aO O(sp)
4(sp)

sp, sp, 3

a0, a0, t1

zero, O(ra)

W
addi
mul
jalr

is a value denoting the location of the
saved registers and local variables for a given
procedure. Simplifies programming because when
stack-pointer changes programmers have to use

different offsets to access the same values.

High address

FP — FP —

SP -~ SP —~
FP —

Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and
sp -~ | structures (if any)

Low address

(@) (b) ()

Using Frame Pointer

main:

f
l
l
l
|

~

mv fp, sp
jal ra, func

» frame pointer initialization

li a7, 10
ecall

-p» function call

» system call “exit”

addi sp, sp, 4 \
li to, 1
sw t0, O(sp)
addi sp, sp, -4
li tO, 2
sw t0, O(sp)
addi sp, sp, -4
li to, 3

“lw " t0, O(fp)
print_int(t0)
lw tO, -4(fp)
print_int(t0)
lw tO, -8(fp)
print_int(t0)

addi sp, sp, 17
jalr zero, O(ra)

\———_

- sp-relative stores

» fp-relative loads

- return

Any Questions?

. cext

start: addi t1,
addi t2, zero, Ox271

beg tl1, t2, done

Zzexro, 0x18

cycle:
slt ttO, twl1, tZ2
bne t0O0, zZero, if less
nop B
sub tl1l, tl1, tZ2
J cycle
nop
1f less: sub t2, t2, tl1
J cycle

done: add t3, tl, =zZero

