
Computer Architecture and Operating Systems
Lecture 5: Assembly Programming – Branches and Memory

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

2

Program Structure and Memory Layout

Stack

Dynamic Data

.data

.text

Reserved
0x 0040 0000

0x 0000 0000

0x 1001 0000

0x 7FFF EFFC

 .data
hello:
 .string "Hello, world!"

 .text
main:
 li a7, 4
 la a0, hello
 ecall

0x1004 0000

Labels are symbolic names for addresses (in the .data
or .text segment).

Labels are used by control-flow instructions (branches
and jumps).

Labels are used by load and store instructions.

3

Labels

Addresses can be represented in several ways

4

Addressing

Program Counter (PC) is a special register that stores
the address of the currently executed instruction.

When an instruction is executed, the PC is
incremented by the size of the instruction (4 bytes) to
point to the next instruction.

Branch and jump instructions assign to the PC new
addresses to change the control flow.

Branch instructions use PC-relative addresses
(increment or decrement current value by an offset).

5

Program Counter

Branch Instructions

Branch = beq rs1, rs2, label

Branch ≠ bne rs1, rs2, label

Branch < blt rs1, rs2, label

Branch ≥ bge rs1, rs2, label

Branch < Unsigned bltu rs1, rs2, label

Branch ≥ Unsigned bgeu rs1, rs2, label

6

Branch Instructions

Branch Pseudo Instructions

Branch unconditionally j label
Branch = 0 beqz rs1, label
Branch ≥ 0 bgez rs1, label
Branch > bgt rs1, rs2, label
Branch > Unsigned bgtu rs1, rs2, label
Branch > 0 bgtz rs1, label
Branch ≤ ble rs1, rs2, label
Branch ≤ Unsigned bleu rs1, rs2, label
Branch ≤ 0 blez rs1, label
Branch < 0 bltz rs1, label
Branch ≠ 0 bnez rs1, label 7

Branch Pseudo Instructions

Branch instructions are PC-relative

They add a 12-bit signed immediate to PC

The immediate is an offset from PC to the target label

The branch address range is ± 212 (4096 B = 4 KB)

PC can be read with the auipc instruction

8

Branches and Program Counter

main:
 auipc a0, 0 # a0 = PC + 0
 li a7, 34 # Print as hex
 ecall # Print a0

9

Assembly Code for “If-Then-Else”

if (t0 == 0) {
 t1 = 1;
} else if (t0 < 0) {
 t1 = 2;
} else if (t0 >= 10) {
 t1 = 3;
} else {
 t1 = 4;
}

if_0:
 bnez t0, if_less_0
 li t1, 1
 j end_if
if_less_0:
 bgez t0, if_greater_10
 li t1, 2
 j end_if
if_greater_10:
 li t3, 10
 blt t0, t3, else
 li t1, 3
 j end_if
else:
 li t1, 4
end_if:

10

Assembly Code for “While”

while((t0 = read_int()) != 0) {
 print_int(t0)
 print_char('\n')
}

while:
 li a7, 5
 ecall
 mv t0, a0
 beqz a0, end_while
 li a7, 1
 ecall
 li a7, 11
 li a0, '\n'
 ecall
 j while
end_while:

11

Assembly Code for “For”

for (t0 = 0; t0 < t1; ++t0) {
 print_int(t0)
 print_char('\n')
}

for:
 li a7, 5
 ecall
 mv t1, a0
 mv t0, zero
next:
 beq t0, t1, end_for
 mv a0, t0
 li a7, 1
 ecall
 li a7, 11
 li a0, '\n'
 ecall
 addi t0, t0, 1
 j next
end_for:

12

Assembly Code for Nested “For”

for (t0 = 0; t0 < s0; ++t0) {
 for (t1 = 0; t0 < s1; ++t1) {
 print_int(t0)
 print_char(':')
 print_int(t1)
 print_int(' ')
 }
 print_char('\n')
}

 mv t0, zero
next_t0:
 beq t0, s0, end_for_t0
 mv t1, zero
next_t1:
 beq t1, s1, end_for_t1
 print_int(t0)
 print_char(':')
 print_int(t1)
 print_char(' ')
 addi t1, t1, 1
 j next_t1
end_for_t1:
 print_char('\n')
 addi t0, t0, 1
 j next_t0
end_for_t0:

Macro is a pattern-matching and replacement facility
that provides a simple mechanism to name a frequently
used sequence of instructions.

13

Macros

.macro print_int (%x)
li a7, 1
mv a0, %x
ecall
.end_macro

 .macro read_int (%x)
 li a7, 5
 ecall
 mv %x, a0
 .end_macro

main:
 read_int(t0)
 print_int(t0)

Use Macros to
Simplify Your Code

It is possible to place macros in a library file and
include it in other assembly programs.

The read_int and print_int macros are defined in the macrolib.s file.

The file must be in the same directory as the program.

14

Including Macro Libraries

 .include "macrolib.s"
main:
 read_int(t0)
 print_int(t0)

15

Macro Constants and Single-Line Macros

 .eqv VAL 0x123
 .eqv X t0
 .eqv Y t1
 .eqv SUM addi Y, X, VAL
main:
 li X, 0x111
 SUM

The .eqv directive can be used to define macro
constants and single-line macros.

Segment .data stores static data (global variables and
constants), which are described with the following

directives:

16

Data Segment

.data

.word 0xDEADBEEF # 32-bit value

.half 0x1234, 0x4567 # 16-bit values

.byte 0x98, 0x76, 0x65, 0x43 # 8-bit values

.space 8 # 8 bytes of empty space

.ascii "Hello " # String

.asciz "World! " # Zero-terminated string

Data items are aligned in memory by their size for convenience of
access. This means address is multiple of size. Default alignment is as

follows:
 .byte # 1 byte
 .half # 2 bytes
 .word # 4 bytes

It is possible to specify a custom alignment by 2n bytes for a next data
item with the .align directive.

 .align 0 # 1 byte
 .align 1 # 2 bytes
 .align 2 # 4 bytes
 .align 3 # 8 bytes
 etc. 17

Data Alignment

18

Data Alignment Example
 .data
 .space 3
word1:
 .word 0x12345678
half1:
 .half 0x1234
byte1:
 .byte 0x12
 .align 4
word2:
 .word 0x12345678
 .align 3
half2:
 .half 0x1234
 .align 3
byte2:
 .byte 0x12
 .align 0
word3:
 .word 0x12345678

Default
Alignment

Custom
Alignment

Load Instructions
lb t1, offset(t2) # t1 <- sign-extended 8-bit value from address t2 + offset
lbu t1, offset(t2) # t1 <- zero-extended 8-bit value from address t2 + offset
lh t1, offset(t2) # t1 <- sign-extended 16-bit value from address t2 + offset
lhu t1, offset(t2) # t1 <- zero-extended 16-bit value from address t2 + offset
lw t1, offset(t2) # t1 <- contents of address t2 + offset

Store Instructions
sb t1, offset(t2) # Store low-order 8 bits (byte) of t1 to address t2 + offset
sh t1, offset(t2) # Store low-order 16 bits (half) of t1 to address t2 + offset
sw t1, offset(t2) # Store contents of t1 to address t2 + offset

Load Address Pseudo Instruction
la t2, label # t1 <- address of label

19

Load and Store Instructions

20

Load and Store Example
 .data
x:
 .word 0
y:
 .word 0
z:
 .word 0
 .text
main:
 read_int(t0)
 la t2, x
 sw t0, 0(t2)

 read_int(t0)
 la t2, y
 sw t0, 0(t2)

 la t2, x
 lw t0, 0(t2)
 la t2, y
 lw t1, 0(t2)
 add t3, t0, t1
 la t2, z
 sw t3, 0(t2)

x, y, and z are static variables

int x, y, z;
x = read_int();
y = read_int();
z = x + y;

21

Load and Store With Offset Example

 .data
data:
 .word 0, 0, 0
 .text
main:
 la t2, data

 read_int(t0)
 sw t0, 0(t2)

 read_int(t0)
 sw t0, 4(t2)

 lw t0, 0(t2)
 lw t1, 4(t2)
 add t3, t0, t1
 sw t3, 8(t2)

data[3] is a static array that
stores three integer variables

int data[3]; # x, y, z
x = read_int();
y = read_int();
z = x + y;

22

Load and Store Pseudoinstruction Example

 .data
x:
 .word 0
y:
 .word 0
z:
 .word 0
 .text
main:
 read_int(t0)
 sw t0, x, t2

 read_int(t0)
 sw t0, y, t2

 lw t0, x
 lw t1, y
 add t3, t0, t1
 sw t3, z, t2

x, y, and z are static variables

int x, y, z;
x = read_int();
y = read_int();
z = x + y;

23

Load and Store Pseudo Instructions

Load Pseudo Instructions

lw t1, (t2) # t1 <- contents of memory at address t2
lw t1, imm # t1 <- contents of memory address in imm
lw t1, label # t1 <- contents of memory at label's address

Store Pseudo Instructions
sw t1,(t2) # Store t1 to address t2
sw t1, imm # Store t1 to address in imm
sw t1, imm, t2 # Store t1 in to address in imm using t2 as temp
sw t1, label, t2 # Store t1 to label's address using t2 as temp

For instructions lb, lbu, lh, lhu, sb, and sh similar pseudo instructions

are provided.

Any Questions?

24

