
Computer Architecture and Operating Systems 
Lecture 5: Assembly Programming – Branches and Memory 

Andrei Tatarnikov 
atatarnikov@hse.ru  

@andrewt0301 



2 

Program Structure and Memory Layout 

Stack 

 
 

Dynamic Data 

.data 

.text 

Reserved 
0x 0040 0000 

0x 0000 0000 

0x 1001 0000 

0x 7FFF EFFC 

        .data 
hello: 
        .string "Hello, world!" 
 

        .text 
main: 
        li a7, 4 
        la a0, hello 
        ecall 

0x1004 0000 



Labels are symbolic names for addresses (in the .data 
or .text segment). 

Labels are used by control-flow instructions (branches 
and jumps). 

Labels are used by load and store instructions. 

3 

Labels 



Addresses can be represented in several ways 

4 

Addressing 



Program Counter (PC) is a special register that stores 
the address of the currently executed instruction. 

When an instruction is executed, the PC is 
incremented by the size of the instruction (4 bytes) to 
point to the next instruction. 

Branch and jump instructions assign to the PC new 
addresses to change the control flow. 

Branch instructions use PC-relative addresses 
(increment or decrement current value by an offset).  

5 

Program Counter 



Branch Instructions 

Branch =                    beq   rs1, rs2, label  

Branch ≠                    bne   rs1, rs2, label  

Branch <                    blt     rs1, rs2, label 

Branch ≥                    bge   rs1, rs2, label 

Branch < Unsigned  bltu   rs1, rs2, label 

Branch ≥ Unsigned  bgeu rs1, rs2, label 

6 

Branch Instructions 



Branch Pseudo Instructions 

Branch unconditionally      j         label 
Branch = 0                            beqz  rs1, label 
Branch ≥ 0                            bgez  rs1, label 
Branch >                               bgt     rs1, rs2, label 
Branch > Unsigned             bgtu   rs1, rs2, label 
Branch > 0                            bgtz   rs1, label 
Branch ≤                               ble     rs1, rs2, label 
Branch ≤ Unsigned             bleu   rs1, rs2, label 
Branch ≤ 0                            blez   rs1, label 
Branch < 0                            bltz    rs1, label 
Branch ≠ 0                            bnez  rs1, label 7 

Branch Pseudo Instructions 



Branch instructions are PC-relative 

They add a 12-bit signed immediate to PC 

The immediate is an offset from PC to the target label 

The branch address range is ± 212 (4096 B = 4 KB) 

PC can be read with the auipc instruction 

8 

Branches and Program Counter 

main: 
        auipc a0, 0   # a0 = PC + 0 
        li        a7, 34 # Print as hex 
        ecall              # Print a0 



9 

Assembly Code for “If-Then-Else” 

if (t0 == 0) { 
    t1 = 1; 
} else if (t0 < 0) { 
    t1 = 2; 
} else if (t0 >= 10) { 
    t1 = 3; 
} else { 
    t1 = 4; 
} 

if_0: 
    bnez  t0, if_less_0 
    li         t1, 1 
    j          end_if 
if_less_0: 
    bgez   t0, if_greater_10 
    li         t1, 2 
    j         end_if 
if_greater_10: 
    li         t3, 10 
    blt      t0, t3, else 
    li          t1, 3 
    j          end_if 
else: 
    li         t1, 4 
end_if: 



10 

Assembly Code for “While” 

while((t0 = read_int()) != 0) { 
    print_int(t0) 
    print_char('\n') 
} 

while: 
    li       a7, 5 
    ecall 
    mv    t0, a0 
    beqz a0, end_while 
    li        a7, 1 
    ecall 
    li        a7, 11 
    li        a0, '\n' 
    ecall 
    j         while 
end_while: 



11 

Assembly Code for “For” 

for (t0 = 0; t0 < t1; ++t0) { 
    print_int(t0) 
    print_char('\n') 
} 

for: 
    li      a7, 5 
    ecall 
    mv   t1, a0 
    mv   t0, zero 
next: 
    beq  t0, t1, end_for 
    mv   a0, t0 
    li       a7, 1 
    ecall 
    li       a7, 11 
    li       a0, '\n' 
    ecall 
    addi t0, t0, 1 
    j        next 
end_for: 



12 

Assembly Code for Nested “For” 

for (t0 = 0; t0 < s0; ++t0) { 
  for (t1 = 0; t0 < s1; ++t1) { 
    print_int(t0) 
    print_char(':') 
    print_int(t1) 
    print_int(' ') 
  } 
  print_char('\n') 
} 

    mv   t0, zero 
next_t0: 
    beq  t0, s0, end_for_t0 
    mv   t1, zero 
next_t1: 
    beq  t1, s1, end_for_t1 
    print_int(t0) 
    print_char(':') 
    print_int(t1) 
    print_char(' ') 
    addi t1, t1, 1 
    j        next_t1 
end_for_t1: 
    print_char('\n') 
    addi  t0, t0, 1 
    j        next_t0 
end_for_t0: 



Macro is a pattern-matching and replacement facility 
that provides a simple mechanism to name a frequently 
used sequence of instructions.  

13 

Macros 

.macro print_int (%x) 
li      a7, 1 
mv  a0, %x 
ecall 
.end_macro 
 
 .macro read_int (%x) 
 li    a7, 5 
 ecall 
 mv %x, a0 
 .end_macro 

main: 
     read_int(t0) 
     print_int(t0) 

Use Macros to 
Simplify Your Code 



It is possible to place macros in a library file and 
include it in other assembly programs. 
 
 
 
 
 
The read_int and print_int macros are defined in the macrolib.s file. 

The file must be in the same directory as the program. 

14 

Including Macro Libraries 

      .include "macrolib.s" 
main: 
      read_int(t0) 
      print_int(t0) 



15 

Macro Constants and Single-Line Macros 

     .eqv VAL 0x123 
     .eqv X t0 
     .eqv Y t1 
     .eqv SUM addi Y, X, VAL 
main: 
      li     X, 0x111 
      SUM 

The .eqv directive can be used to define macro 
constants and single-line macros.  



Segment .data stores static data (global variables and 
constants), which are described with the following 

directives: 

16 

Data Segment 

.data 

.word  0xDEADBEEF                   # 32-bit value 

.half    0x1234, 0x4567              # 16-bit values 

.byte   0x98, 0x76, 0x65, 0x43  # 8-bit values 

.space 8                                        # 8 bytes of empty space   

.ascii    "Hello "                            # String 

.asciz   "World! "                         # Zero-terminated string 



Data items are aligned in memory by their size for convenience of 
access. This means address is multiple of size. Default alignment is as 

follows: 
 .byte      #  1 byte 
 .half       #  2 bytes 
 .word     #  4 bytes 

It is possible to specify a custom alignment by 2n bytes for a next data 
item with the .align directive.  

 .align 0   # 1 byte 
 .align 1   # 2 bytes 
 .align 2   # 4 bytes 
 .align 3   # 8 bytes 
 etc. 17 

Data Alignment 



18 

Data Alignment Example 
         .data 
         .space  3 
word1: 
         .word   0x12345678  
half1: 
         .half     0x1234 
byte1: 
         .byte    0x12 
         .align   4 
word2: 
         .word   0x12345678   
         .align   3 
half2: 
         .half     0x1234 
         .align   3 
byte2: 
         .byte    0x12    
         .align   0 
word3: 
         .word   0x12345678 

Default 
Alignment 

Custom 
Alignment 



Load Instructions 
lb   t1, offset(t2) # t1 <- sign-extended 8-bit value from address t2 + offset 
lbu t1, offset(t2) # t1 <- zero-extended 8-bit value from address t2 + offset 
lh   t1, offset(t2) # t1 <- sign-extended 16-bit value from address t2 + offset 
lhu t1, offset(t2) # t1 <- zero-extended 16-bit value from address t2 + offset 
lw   t1, offset(t2) # t1 <- contents of address t2 + offset 

Store Instructions 
sb t1, offset(t2) # Store low-order 8 bits (byte) of t1 to address t2 + offset 
sh t1, offset(t2) # Store low-order 16 bits (half) of t1 to address t2 + offset 
sw t1, offset(t2) # Store contents of t1 to address t2 + offset 

Load Address Pseudo Instruction 
la t2, label # t1 <- address of label 

19 

Load and Store Instructions 



20 

Load and Store Example  
        .data 
x: 
        .word 0 
y: 
        .word 0 
z: 
        .word 0 
        .text 
main: 
        read_int(t0) 
        la     t2, x 
        sw   t0, 0(t2) 
 
        read_int(t0) 
        la     t2, y 
        sw   t0, 0(t2) 
 
        la     t2, x 
        lw    t0, 0(t2) 
        la     t2, y 
        lw    t1, 0(t2) 
        add t3, t0, t1 
        la     t2, z 
        sw   t3, 0(t2) 

# x, y, and z are static variables 
 
int x, y, z; 
x = read_int(); 
y = read_int(); 
z = x + y; 



21 

Load and Store With Offset Example  

        .data 
data: 
        .word 0, 0, 0 
        .text 
main: 
        la    t2, data 
 
        read_int(t0) 
        sw   t0, 0(t2) 
 
        read_int(t0) 
        sw   t0, 4(t2) 
 
        lw    t0, 0(t2) 
        lw    t1, 4(t2) 
        add t3, t0, t1 
        sw   t3, 8(t2) 

# data[3] is a static array that 
stores three integer variables 
 
 
int data[3]; # x, y, z 
x = read_int(); 
y = read_int(); 
z = x + y; 



22 

Load and Store Pseudoinstruction Example  

        .data 
x: 
        .word 0 
y: 
        .word 0 
z: 
        .word 0 
        .text 
main: 
        read_int(t0) 
        sw   t0, x, t2 
 
        read_int(t0) 
        sw   t0, y, t2 
 
        lw    t0, x 
        lw    t1, y 
        add  t3, t0, t1 
        sw    t3, z, t2 

# x, y, and z are static variables 
 
int x, y, z; 
x = read_int(); 
y = read_int(); 
z = x + y; 



23 

Load and Store Pseudo Instructions 

Load Pseudo Instructions 

lw t1, (t2)           # t1 <- contents of memory at address t2 
lw t1, imm         # t1 <- contents of memory address in imm 
lw t1, label        # t1 <- contents of memory at label's address 

Store Pseudo Instructions 
sw t1,(t2)          # Store t1 to address t2 
sw t1, imm        # Store t1 to address in imm 
sw t1, imm, t2   # Store t1 in to address in imm using t2 as temp 
sw t1, label, t2  # Store t1 to label's address using t2 as temp 
 
For instructions lb, lbu, lh, lhu, sb, and sh similar pseudo instructions 

are provided. 



Any Questions? 

24 


