Faculty (°

Computer
science

Highar Ssbseel of Eranomics

NATIONAL RESEARCH
UNIVERSITY

Computer Architecture and Operating Systems

Lecture 5: Assembly Programming — Branches and Memory

Andrei Tatarnikov

atatarnikov@hse.ru
@andrewt0301

Program Structure and Memory Layout

____________) Ox 7FFF EFFC
- ~~ Stack
, .data N s
(hello:. |
v .string "Hello, world!".’ %
T~ e .= Dynamic Data
ZIz=zz=----T 0x1004 0000
//, . text \\\ .data
/ main: Y Ox 1001 0000
! lia7, 4 " » text
' la a0, heIIo// 0x 0040 0000
S~ -~ 0x 0000 0000

T a

are symbolic names for addresses (in the .data

or .text segment).

are used by control-flow instructions (branches
and jumps).

are used by load and store instructions.

Label Address ¥

hello.s
0x10010000
0x=00400000

hello
main

Data Text

Addresses can be represented in several ways

1. Immediate addressing

Addressing

immediate | rs1 |funct3| rd | op
2. Register addressing
funct7| rs2 | rs1 |funct3| rd | op Registers
| > Register
3. Base addressing
immediate | rs1 |funct3| rd | op Memory
Register @— [Byte | Halfword Word Doubleword
|
4. PC-relative addressing
imm | rs2 | rs1 |funct3{imm| op Memory
| |
PC Word

ﬁ}

Program Counter

IS a special register that stores
the address of the currently executed instruction.

=\When an instruction is executed, the PC s
incremented by the size of the instruction (4 bytes) to
point to the next instruction.

"Branch and jump instructions assign to the PC new
addresses to change the control flow.

"Branch instructions use PC-relative addresses
(increment or decrement current value by an offset).

Branch Instructions

Branch Instructions

"Branch =
"Branch #
"Branch <
"Branch >
"Branch < Unsigned

oeq rsl, rs2, label
one rsl, rs2, label
olt rs1, rs2, label
oge rsl, rs2, label

oltu rs1, rs2, label

"Branch > Unsigned bgeu rsl, rs2, label

Branch Pseudo Instructions

" Branc
=" Branc
=" Branc
=" Branc
=" Branc
=" Branc
=" Branc
=" Branc
=" Branc
=" Branc
=" Branc

Branch Pseudo Instructions

n unconditionally
n=0

20

1

n > Unsigned
n>0

N <

n < Unsigned
n<0

<0

N #0

j label

oeqz rsl, label
ogez rsl, label

ogt rsl, rs2, label

ogtu rsl, rs2, label
ogtz rsl, label
ole rsl, rs2, label

oleu rsl, rs2, label
olez rsl, label
oltz rsl, label
onez rsl, label

Branches and Program Counter

"Branch instructions are PC-relative
"They add a 12-bit sighed immediate to
"The immediate is an offset from PC to the target label

*The branch address range is + 212 (4096 B = 4 KB)
can be read with the instruction

main:
auipca0,0 #a0=PC+0
li a7, 34 # Print as hex
ecall # Print a0

Assembly Code for “If-Then-Else”

if _O:
Ignez t0, if less O
if (t0 == 0) { i
tl=1; if less 0:
 else if (t0 < 0) { bgez 10, f_greater_10
- M. | ’
tl _.2' j end_if
} else if (t0 >= 10) { if greater _10:
t1 = 3- i t3, 10
’ blt t0, t3, else
} else { i t1, 3
t1 = 4- j end_if
’ else:
} it 4

end_if:

Assembly Code for “While”

while((t0 = read _int()) !=0) {

J

print_int(t0)
print_char('\n')

while:
li a7/, 5
ecall
mv t0, a0
beqz a0, end while
li a’, 1
ecall
li a/, 11
li a0, \n'
ecall
j while
end_while:

Assembly Code for “For”

for:
i a7,5

ecall

mv t1, a0

mv t0, zero
for (t0 = 0; t0 < t1; ++t0) { et end
. , eq t0, t1, end for
pr{nt_lnt(to) mv a0, t0
print_char("\n") i a7,1
} ecall
i a7, 11
i a0, '\n'
ecall
addi t0, t0, 1
| next

end_for: @

Assembly Code for Nested “For”

mv tO, zero
next_t0:

for (t0 = 0; t0 < sO; ++t0) { beq t0, sO, end for tO
for (t1 =0; t0 < s1; ++t1) { A
print_int(t0) beq t1, s(lb)end_for_tl
. 1,1 print_int(t
pr{nt_ghar() print_char(":")
print_int(t1) print_int(t1)
print_int(" Caai T £, 1
} jd next tl
. 1 1 tl:
print_char('\n') e"pﬁ{ﬁi-char(-\n-)
} addi t0, t0, 1

J next t0
end_for tO: @

Macros

IS a pattern-matching and replacement facility
that provides a simple mechanism to name a frequently
used sequence of instructions.

.macro print_int (%x)

i a7,1 Use Macros to

mv ”aO, %X Simplify Your Code main:

eca .

.end_macro "eqd_’!"t(tO)
print_int(t0)

.macro read_int (%x)

li a7,5

ecall

mv %x, a0

.end_macro @

Including Macro Libraries

It is possible to place macros in a file and
it in other assembly programs.

.include "macrolib.s"
main:

read _int(t0)

print_int(t0)

The read _int and print_int macros are defined in the macrolib.s file.
The file must be in the same directory as the program.

Macro Constants and Single-Line Macros

The directive can be used to define macro
constants and single-line macros.

.eqv VAL Ox123

.eqv X t0

.eqv Ytl

.eqv SUM addi Y, X, VAL
main:

i X, 0x111

SUM

Segment stores static data (global variables and
constants), which are described with the following
data directives:
.word OxDEADBEEF # 32-bit value
half 0x1234, 0x4567 # 16-bit values
.byte 0x98, 0x76, 0x65, 0x43 # 8-bit values
.space 8 # 8 bytes of empty space
.ascii "Hello " # String
.asciz "World! " # Zero-terminated string

Data Alignment

Data items are aligned in memory by their size for convenience of
access. This means address is multiple of size. Default alignment is as

follows:
= # 1 byte
= # 2 bytes
= # 4 bytes

It is possible to specify a custom alignment by 2" bytes for a next data
item with the .align directive.

., O #1 byte
= 1 # 2 bytes
= 2 # 4 bytes
= 3 # 8 bytes

" etc.

Data Alighment Example

.data
.Space 3
word1.
word 0x12345678
half1:
half 0x1234
bytel:
.byte 0x12
align 4
word2.
.word 0x12345678
.align 3
half2:
half 0x1234
.align 3
byte2:
.byte 0x12
.align 0
word3:
.word_ 0x12345678

Default
Alignment

Custom
Alignment

Labels
Label Address A
data.s

word 1 Bxloaleead
halfl Bx100810008
bytel Bx10010008a
word 2 Bx10010018
half2 Bx10010018
byte2 Bx10010028
word 3 Bx10010021

+| Data |+ Text

P

Load and Store Instructions

Load Instructions
b t1, offset(t2) # t1 <- sign-extended 8-bit value from address t2 + offset
bu t1, offset(t2) # t1 <- zero-extended 8-bit value from address t2 + offset
N tl, offset(t2) # t1 <- sign-extended 16-bit value from address t2 + offset

nu tl, offset(t2) # t1 <- zero-extended 16-bit value from address t2 + offset
w tl, offset(t2) # t1 <- contents of address t2 + offset

Store Instructions
sb t1, offset(t2) # Store low-order 8 bits (byte) of t1 to address t2 + offset
sh t1, offset(t2) # Store low-order 16 bits (half) of t1 to address t2 + offset
sw t1, offset(t2) # Store contents of t1 to address t2 + offset

Load Address Pseudo Instruction
la t2, label # t1 <- address of label

Load and Store Example

.data
X

.word 0
y:

X, y, and z are static variables z:

.word 0

.word 0
text
. main:
Intx, vy, z; read_int(t0)
. la 12, x
X = read_int(); sw t0, 0(t2)

y = read_in t(), read_int(t0)

la t2

Y
Z=X+tY, sw t0, 0(t2)

la t2, x
lw 10, 0(t2)
la t2,y
lw t1, O(t2)
add t3, t0, t1
la 12,z
sw t3, 0(t2)

Load and Store With Offset Example

.data
data[3] is a static array that data: 1000
stores three integer variables \t'\é% o

main:

la t2, data
int data[3.]; HX,Y,z gsvadfé',qg(tt()z))
X = read_int(); read._int(t0)
y = read_int(); sw 10, 4(t2)
Z=X+t1Yy, lw t0, O(t2

lw t1, 4(t2
add t3, t0, t1

sw t3, 8(t2) @

Load and Store Pseudoinstruction Example

.data

.word 0

X, y, and z are static variables y:
.word 0

.word 0

intx, vy, z; text
: main:
X = I’EOd_Int(); read_int(t0)

. t0, x, t2

v = read int(); R
_] read_int(t0)
Z=X+tY, sw t0,vy, t2

lw tO, x

lw tl,y

add t3, t0, t1
sw t3,z,t2

Load and Store Pseudo Instructions

Load Pseudo Instructions

w tl, (t2) # t1 <- contents of memory at address t2
w tl, imm # t1 <- contents of memory address in imm
w tl, label # t1 <- contents of memory at label's address

Store Pseudo Instructions

sw tl,(t2) # Store t1 to address t2

sw tl, imm # Store t1 to address in imm

swtl, imm, t2 # Store tl in to address in imm using t2 as temp
sw tl, label, t2 # Store t1 to label's address using t2 as temp

For instructions Ib, lbu, |h, lhu, sb, and sh similar pseudo instructions
are provided.

Any Questions?

. cext

start: addi t1,
addi t2, zero, Ox271

beg tl1, t2, done

Zzexro, 0x18

cycle:
slt ttO, twl1, tZ2
bne t0O0, zZero, if less
nop B
sub tl1l, tl1, tZ2
J cycle
nop
1f less: sub t2, t2, tl1
J cycle

done: add t3, tl, =zZero

