
Computer Architecture and Operating Systems
Lecture 3: Computer Architecture

Andrei Tatarnikov
atatarnikov@hse.ru

@andrewt0301

2

Computer Under Cover

1. Monitor
2. Hard drive
3. CPU (Processor)
4. Fan with cover
5. Spot for memory DIMMs
6. Spot for battery
7. Motherboard
8. Fan with cover
9. DVD drive
10.Keyboard

1 2 3 4 5 6 7 8 9 10

One or more CPUs and device controllers connected
through a bus providing access to shared memory

3

Computer Organization

Application software
Written in high-level language

System software
Compiler: translates high-level

language code to machine code
Operating System: service code
Handling input/output

Managing memory and storage

 Scheduling tasks & sharing resources

Hardware
CPU, memory, I/O controllers 4

Program Under Hood

High-level language

 Level of abstraction closer
to problem domain

Provides productivity and portability

Assembly language

Textual representation
 of instructions

Hardware representation

Binary digits (bits)

Encoded instructions and data
5

Levels of Program Code

Abstraction helps us deal with

complexity
Hide lower-level detail

 Instruction set architecture (ISA)
The hardware/software interface

Application binary interface (ABI)
The ISA plus system software

interface

 Implementation (microarchitecture)
The details underlying the interface

6

Abstractions

Focus
of this
course

Central Processing Unit (CPU) is
the heart of any computer system.

Main components:

Register file: small fast memory
for immediate access to data

Datapath: performs operations
on data

Control unit: sequences
datapath, memory, etc.

 7

Inside the Processor (CPU)

Operation of digital hardware governed by a constant-
rate clock

Clock period: duration of a clock cycle
e.g., 250 ps = 0.25 ns = 250×10–12 s

Clock frequency (rate): cycles per second
e.g., 4.0 GHz = 4000 MHz = 4.0×109 Hz

8

CPU Clocking

Clock (cycles)

Data transfer

and computation

Update state

Clock period

Performance depends on
Algorithm: affects IC, possibly CPI

Programming language: affects IC, CPI

Compiler: affects IC, CPI

 Instruction set architecture: affects IC, CPI, Tc

9

CPU Time

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU

Instruction set architecture (ISA) is the interface between
the hardware and the lowest-level software. This is one of
the most important abstractions.

ISA Classification
Complex instruction set computer (CISC)
 x86/x64 (Intel and AMD)

Reduced instruction set computer (RISC)
ARM, PowerPC, MIPS, RISC-V

Very long instruction word (VLIW)
 Itanium, Elbrus

10

Instruction Set Architecture (ISA)

Reduced Instruction Set Computing (RISC) concept was
proposed by teams of researchers at Stanford University
(John Hennessy) and University of California Berkeley (David
Paterson) in early 1980s as an alternative of Complex
Instruction Set Computing (CISC) dominating at that time.

11

Reduced Instruction Set Computing (RISC)

RISC ISAs dominate – most
mobile devices use ARM (RISC)

Modern CISC ISAs (x86/x64)
are RISC-like underneath

2017 Turing Award to
Patterson and Hennessy

All instructions are executed by hardware

Maximize the rate at which instructions are issued

Instructions should be easy to decode

Only loads and stores should reference memory

Provide plenty of registers

12

RISC Principles

Industry

Education Research

Simple ISA by UC Berkeley (2010)

Open and Free

Wide-Purpose Configurable ISA
(from IoT to mainframes)

Maintained by RISC-V Foundation
(moved to Switzerland)

Supported by many IT Companies
and Universities

13

RISC-V ISA

Innovation

14

RISC-V Community

and many others…

Wide Support of IT Companies (except Intel and ARM)
and Universities

15

How CPU Works

32 bit words

000000…000

32-bit words

ALU

Register File

Arithmetic
Logic Unit

x0
x1
x2
x3
…

x31 Machine
language directly

reflects this
structure

Main Memory

Stores
program

and
data

0
4
8

12
16
20

1. Fetch next instruction from memory into instruction
register

2. Change program counter to point to next instruction

3. Determine type of instruction just fetched

4. If instructions uses word in memory, determine
where Fetch word, if needed, into CPU register

5. Execute the instruction

6. Go to step 1 to begin executing following instruction

16

Instruction Execution

17

RISC-V CPU Scheme

18

RISC-V General-Purpose Registers
Register Name Use Saver

x0 zero constant 0 n/a

x1 ra return addr caller

x2 sp stack ptr callee

x3 gp gbl ptr

x4 tp thread ptr

x5-x7 t0-t2 temporaries caller

x8 s0/fp saved/ frame ptr callee

x9 s1 saved callee

x10-x17 a0-a7 arguments caller

x18-x27 s2-s11 saved callee

x28-x31 t3-t6 temporaries caller

32 Registers

32 (or 64) Bits Wide

 Fixed-size 32 bit instructions

 Always three operands: d -> op(s, t)

 Instruction types
 Computational instructions

 Load-store instructions

 Control-transfer instructions

 System instructions

All operations done with registers

19

RISC-V Instructions

1. Primitive arithmetic and
logical operations

2. Complex data types and
data structures

3. Complex control
structures – conditional
statements, loops and
procedures

4. Not suitable for direct
implementation in
hardware 20

Assembly Programming

1. Primitive arithmetic and
logical operations

2. Primitive data structures
– bits and integers

3. Control transfer
instructions

4. Designed to be directly
implementable in
hardware

High Level Language vs Assembly Language

tedious programming!

Arithmetic, comparison, logical, and shift operations.
Register-Register Instructions:
2 source operand registers
1 destination register
Format: op dest, src1, src2

21

Computational Instructions

Arithmetic Comparisons Logical Shifts

add, sub slt, sltu and, or, xor sll, srl, sra

add x3, x1, x2
slt x3, x1, x2
and x3, x1, x2
sll x3, x1, x2

x3 <- x1 + x2
if x1 < x2 then x3 = 1 else x3 = 0
x3 <- x1 & x2
x3 <- x1 << x2

 One operand comes from a register and the other is a
small constant that is encoded into the instruction.
 Format: op dest, src1, src2

22

Register-Immediate Instructions

Format Arithmetic Comparisons Logical Shifts

Register-Register add, sub slt, sltu and, or, xor sll, srl, sra

Register-Immediate addi slti, sltiu andi, ori, xori slli, srli, srai

addi x3, x1, 3
andi x3, x1, 3
slli x3, x1, 3
addi x3, x1, -3

x3 <- x1 + 3
x3 <- x1 & 3
x3 <- x1 << 3
x3 <- x1 - 3

No subi, instead use negative constant.

Execute a = ((b+3) >> c) - 1;
Break up complex expression into basic computations.
Our instructions can only specify two source operands and one

destination operand (also known as three address instruction).

Assume a, b, c are in registers x1, x2, and x3 respectively.
Use x4 for t0, and x5 for t1.

23

Compound Computations

t0 = b + 3;
t1 = t0 >> c;
a = t1 - 1;

addi x4, x2, 3
srl x5, x4, x3
addi x1, x5, -1

Need Conditional branch instructions:
 Format: comp src1, src2, label
 First performs comparison to determine if branch is taken or not:

src1 comp src2
 If comparison returns True, then branch is taken, else continue

executing program in order.

24

Control Flow Instructions

if (a < b): c = a + 1
else: c = b + 2

assume
x1=a; x2=b; x3=c;

 bge x1, x2, else
 addi x3, x1, 1
 beq x0, x0, end
else:
 addi x3, x2, 2
end:

jal: Unconditional jump and link
 Example: jal x3, label
 Jump target specified as label
 label is encoded as an offset from current instruction
 Link (to be discussed later): is stored in x3

jalr: Unconditional jump via register and link
 Example: jalr x3, 4(x1)
 Jump target specified as register value plus constant offset
 Example: Jump target = x1 + 4
 Can jump to any 32 bit address – supports long jumps

25

Unconditional Control Instructions: Jumps

 Instructions are encoded as 32 bits

Need to specify operation (10 bits)

Need to specify 2 source registers (10 bits) or 1 source register
(5 bits) plus a small constant

Need to specify 1 destination register (5 bits)

The constant in register-immediate instructions has to be
smaller than 12 bits; bigger constants have to be stored in
the memory or a register and then used explicitly

The constant in a jal instruction is 20 bits wide (7 bits for
operation, and 5 bits for register)

26

Constants and Instruction Encoding Limits

27

Computations on Values in Memory

b
c

a
32 bit words

Main Memory

0x0
0x4
0x8
0xC

0x10
0x14

a = b + c

x1 <- load(Mem[b])
x2 <- load(Mem[c])
x3 <- x1 + x2
store(Mem[a]) <- x3

x1 <- load(0x4)
x2 <- load(0x8)
x3 <- x1 + x2
store(0x10) <- x3

Address is specified as a <base address, offset> pair:
Base address is always stored in a register
Offset is specified as a small constant
Format: lw dest, offset(base) sw src, offset(base)

28

Load and Store Instructions

lw x1, 0x4(x0)
lw x2, 0x8(x0)
add x3, x1, x2
sw x3, 0x10(x0)

x1 <- load(Mem[x0 + 0x4])
x2 <- load(Mem[x0 + 0x8])
x3 <- x1 + x2
store(Mem[x0 + 0x10]) <- x3

Aliases to other actual instructions to simplify
assembly programming.

29

Pseudoinstructions

Pseudoinstruction:

mv x2, x1
li x2, 3
ble x1, x2, label
beqz x1, label
bnez x1, label
j label

Equivalent Assembly Instruction:

addi x2, x1, 0
addi x2, x0, 3
bge x2, x1, label
beq x1, x0, label
bne x1, x0, label
jal x0, label

Main Memory sum = a[0] + a[1] + a[2] + ... + a[n-1]
(assume base address 100 is already in x10)

30

Example: Program to Sum Array Elements

 lw x1, 0x0(x10)
 lw x2, 0x4(x10)
 add x3, x0, x0
loop:
 lw x4, 0x0(x1)
 add x3, x3, x4
 addi x1, x1, 4
 addi x2, x2, -1
 bnez x2, loop
 sw x3, 0x8(x10)

a[0]
a[1]

a[n-1]

0
4

100
104
108

Addr of a[i]

n
sum

100

Register File

x1
x2
x3

x10

base
n

sum

Any Questions?

31

