Faculty (°

Computer
science

Highar Ssbseel of Eranomics

NATIONAL RESEARCH
UNIVERSITY

Computer Architecture and Operating Systems

Lecture 3: Computer Architecture

Andrei Tatarnikov

atatarnikov@hse.ru
@andrewt0301

Computer Under Cover

. Monitor

Hard drive

. CPU (Processor)

Fan with cover

Spot for memory DIMMs
. Spot for battery
Motherboard

Fan with cover

. DVD drive

10.Keyboard

© 0NV A WN R

Computer Organization

®0One or more CPUs and device controllers connected
through a bus providing access to shared memory

: keyboard printer monitor
disks .
- / el T S
=) 1 B
]
disk keyboard USB graphics
CPU
controller controller controller adapter

memory

Program Under Hood

" Application software
Written in high-level language

= System software

Compiler: translates high-level
language code to machine code

Operating System: service code
» Handling input/output
=" Managing memory and storage
= Scheduling tasks & sharing resources

"Hardware
CPU, memory, I/O controllers

Levels of Program Code

High-level swap(int vl], int k) .
ki " High-level language
(in C) vlk] = v[k+11;
, T Level of abstraction closer

to problem domain
Provides productivity and portability

Assembly swap: '
orogram o0, ®Assembly language
(orRISC) PRt

d X7, 00x0) Textual representation

Jjalr x0, 0(x1)

of instructions

* Hardware representation

Binary machine 00000000001101011001001100010011 B|nary dIgItS (b|t5)

language 00000000011001010000001100110011

program 00000000000000110011001010000011 . .

(for RISC-V) 00000000100000110011001110000011 EnCOded Instructions and data

00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

Abstractions

" Abstraction helps us deal with
complexity

Hide lower-level detail

" |nstruction set architecture (ISA)
The hardware/software interface

" Application binary interface (ABI)
The ISA plus system software
interface

" Implementation (microarchitecture)
The details underlying the interface

Application
Software

>"hello

world!”

Operating
Systems

<

Micro-
architecture

D

Logic

o[+ Jo

Digital
Circuits

Analog
Circuits

Devices

Physics

RS 0

of this
course

Inside the Processor (CPU)

Central Processing Unit (CPU) is
the heart of any computer system.

Main components:

" Register file: small fast memory
for immediate access to data

" Datapath: performs operations
on data

" Control unit: sequences

Fr R s | o i G hip ' 4 j—

datapath, memory, etc. i

CPU Clocking

I<—Clock period—»I

Clock (cycles)
Data transfer | | : :
and computation| |
Update state i . ' .
" Operation of digital hardware governed by a constant-
rate clock

" Clock period: duration of a clock cycle
e.g., 250 ps =0.25 ns = 250x1071?s
"Clock frequency (rate): cycles per second

e.g., 4.0 GHz = 4000 MHz = 4.0x10° Hz

CPU Time

: Instructio ns Clock cycles Seconds
CPU Time = X X

Program Instructio n Clock cycle

"Performance depends on
Algorithm: affects IC, possibly CPI
Programming language: affects IC, CPI
Compiler: affects IC, CPI
Instruction set architecture: affects IC, CPI, T_

Instruction Set Architecture (ISA)

Instruction set architecture (ISA) is the interface between
the hardware and the lowest-level software. This is one of
the most important abstractions.

ISA Classification

" Complex instruction set computer (CISC)
x86/x64 (Intel and AMD)

» Reduced instruction set computer (RISC)
ARM, PowerPC, MIPS, RISC-V

"Very long instruction word (VLIW)
ltanium, Elbrus

Reduced Instruction Set Computing (RISC)

Reduced Instruction Set Computing (RISC) concept was
proposed by teams of researchers at Stanford University
(John Hennessy) and University of California Berkeley (David
Paterson) in early 1980s as an alternative of Complex
Instruction Set Computing (CISC) dominating at that time.

=RISC ISAs dominate — most
mobile devices use ARM (RISC)

=Modern CISC ISAs (x86/x64)
| are R SC-like underneath

gd 22017 Turing Award to
Stanford Univeccty (O gisi i otterson Patterson and Hennessy @

University of California, Berkele\

RISC Principles

" All instructions are executed by hardware

" Maximize the rate at which instructions are issued
" nstructions should be easy to decode
"Only loads and stores should reference memory

"Provide plenty of registers

RISC-V ISA

=Simple ISA by UC Berkeley (2010) : 4

®"Open and Free

RISC
" Wide-Purpose Configurable ISA Industry
(from loT to mainframes)
=" Maintained by RISC-V Foundation
(moved to Switzerland)
Education Research

*Supported by many IT Companies
and Universities = ©

RISC-V Community

Wide Support of IT Companies (except Intel and ARM)
and Universities

) Alibaba Cloud \‘?) ANDES -.<\\ gﬁ%ﬁ"f;

TECHMNOLOGY

HUAWEI
Western
Digital. @2 PSnmsuncg
NVIDIA

(KA
]|

@ ETH:zurich T =
Google —
9 and many others...

How CPU Works

Register File

000000...000

< >
32-bit words

v U

ALU j
Arithmetic
Logic Unit

Main Memory

0

4 Stores

ISfll 32 bit words program

12 and
Machine 16 data

language directly 20
reflects this
structure

Instruction Execution

1. Fetch next instruction from memory into instruction
register

2. Change program counter to point to next instruction

3.
4.

Determine type of instruction just fetched

f instructions uses word in memory, determine

where Fetch word, if needed, into CPU register

5. Execute the instruction

6. Go to step 1 to begin executing following instruction

RISC-V CPU Scheme

Add

-

Address Instruction

Instruction
memory

Data

Register #
Registers

Register #

Register #

Address

Data

Data
memory

RISC-V General-Purpose Registers

Register Name
x0 zero constant O n/a
x1 ra return addr caller
X2 sp stack ptr callee
X3 gp gbl ptr
x4 tp thread ptr
X5-x7 t0-t2 temporaries caller
X8 sO/fp saved/ frame ptr callee
X9 sl saved callee
x10-x17 a0-a7 arguments caller
x18-x27 s2-s11 saved callee
x28-x31 t3-t6 temporaries caller

32 Registers

32 (or 64) Bits Wide

RISC-V Instructions

" Fixed-size 32 bit instructions

= Always three operands: d -> op(s, t)

" |nstruction types
Computational instructions
Load-store instructions
Control-transfer instructions
System instructions

" All operations done with registers

Assembly Programming

High Level Language vs Assembly Language

1. Primitive arithmetic and
logical operations

2. Complex data types and
data structures

3. Complex control
structures — conditional
statements, loops and
procedures

4. Not suitable for direct
implementation in
hardware

1.

Primitive arithmetic and
ogical operations

. Primitive data structures

— bits and integers

. Control transfer

instructions

. Designed to be directly

implementable in
hardware

Computational Instructions

" Arithmetic, comparison, logical, and shift operations.

= Register-Register Instructions:
2 source operand registers
1 destination register
Format: op dest, srcl, src2

add, sub slt, sltu and, or, xor sll, srl, sra

add x3, x1, x2 X3 <-x1+x2

slt x3, x1, x2 if X1 <x2thenx3=1elsex3=0

and x3, x1, x2 X3 <- x1 & x2

sll - x3, x1, x2 x3 <- x1 << x2 e

Register-Immediate Instructions

" One operand comes from a register and the other is a
small constant that is encoded into the instruction.
Format: op dest, srcl, src2

Format _______|Arithmetic | Comparisons |Logical ___[shifts

Register-Register add, sub slt, sltu and, or, xor sll, srl, sra
Register-Immediate addi slti, sltiu andi, ori, xori slli, srli, srai
addi x3, x1, 3 Xx3<-x1+3
andi x3, x1, 3 Xx3<-x1& 3
slli - x3, x1, 3 X3 <-x1<<3
addi x3, x1, -3 X3 <-x1-3

No subi, instead use negative constant.

Compound Computations

mExecute a = ((b+3)>>c)-1;
Break up complex expression into basic computations.

= Qur instructions can only specify two source operands and one
destination operand (also known as three address instruction).

Assume a, b, c are in registers x1, x2, and x3 respectively.

Use x4 for t0, and x5 for t1.

addi x4, x2, 3 tO=b+ 3;
srl x5, x4, x3 tl =10 >>c;
addi x1, x5, -1 a=tl-1;

Control Flow Instructions

" Need Conditional branch instructions:
Format: comp srcl, src2, label
First performs comparison to determine if branch is taken or not:

srcl comp src2
If comparison returns True, then branch is taken, else continue
executing program in order.

bge x1, x2, else if(a<b): c=a+1
addi x3, x1, 1 else: c=b+2
beq x0, x0, end

else: assume
addi x3, x2, 2 x1=a; x2=b; x3=c;

end: @

Unconditional Control Instructions: Jumps

"jal: Unconditional jump and link
Example: jal x3, label
Jump target specified as label
abel is encoded as an offset from current instruction
Link (to be discussed later): is stored in x3

mjalr: Unconditional jump via register and link
Example: jalr x3, 4(x1)
Jump target specified as register value plus constant offset
Example: Jump target=x1+4
Can jump to any 32 bit address — supports long jumps @

Constants and Instruction Encoding Limits

" |nstructions are encoded as 32 bits
Need to specify operation (10 bits)

Need to specify 2 source registers (10 bits) or 1 source register
(5 bits) plus a small constant

Need to specify 1 destination register (5 bits)

" The constant in register-immediate instructions has to be
smaller than 12 bits; bigger constants have to be stored in
the memory or a register and then used explicitly

" The constant in a jal instruction is 20 bits wide (7 bits for
operation, and 5 bits for register) e

Computations on Values in Memory

a=b+c Main Memory

x1 <- load(Mem|[b])

x2 <- load(Mem|c]) 0x0

X3 <-x1 +x2 Ox4

store(Mem/[a]) <- x3 Ox8 C
OxC

x1 <- load(0x4) 0x10 a

X2 <- load(0x8))UK 32 bit words

X3 <-x1 + x2
store(0x10) <- x3

Load and Store Instructions

" Address is specified as a <base address, offset> pair:
Base address is always stored in a register
Offset is specified as a small constant
Format: lw dest, offset(base) sw src, offset(base)

lw x1, 0x4(x0) x1 <- load(Mem[x0 + 0x4])
lw x2, 0x8(x0) X2 <- load(Mem[x0 + 0x8])
add x3, x1, x2 X3 <-x1 + x2

sw x3, 0x10(x0) store(Mem[x0 + 0x10]) <- x3

Pseudoinstructions

Pseudoinstruction:

mv X2, x1

i X2, 3

ole x1, x2, label
oeqz x1, label
onez x1, label

label

addi x2, x1, 0
addi x2, x0, 3
oge x2, X1,
oeq x1, x0,

d

one x1, x0,
X0, label

d
d

" Aliases to other actual instructions to simplify
assembly programming.

Equivalent Assembly Instruction:

e
0[S

0[S

Example: Program to Sum Array Elements

sum = a[0] + a[1] + a[2] + ... + a[n-1] Main Memory
(assume base address 100 is already in x10)

lw x1, 0xO(x10) Register File 0

lw x2, 0x4(x10) 4
Ioc?s-d X3, X0, X0 1 Addr of ali

lw x4, 0x0(x1) X2 4

add x3, x3, x4 X3 ouim

. 100
addi x1,x1,4 0 T 104
ddi x2,x2, -1 X
addi x2, x 108

bnez x2, loop
sw x3, 0x8(x10)

Any Questions?

. cext

start: addi t1,
addi t2, zero, Ox271

beg tl1, t2, done

Zzexro, 0x18

cycle:
slt ttO, twl1, tZ2
bne t0O0, zZero, if less
nop B
sub tl1l, tl1, tZ2
J cycle
nop
1f less: sub t2, t2, tl1
J cycle

done: add t3, tl, =zZero

