
Computer Architecture and Operating Systems
Lecture 1: Introduction

Andrei Tatarnikov
andrewt0301@gmail.com

@andrewt0301

Website
https://andrewt0301.github.io/hse-acos-course/

Wiki
http://wiki.cs.hse.ru/ACOS_DSBA_2024/25
http://wiki.cs.hse.ru/ACOS_COMPDS_2024/2025

Telegram
https://t.me/+wRC-TJXoI9M0ZmFi (DSBA)
https://t.me/+gTIDlXK1e3MyZjcy (COMPDS/EAD/VSN)

2

Course Resources

https://andrewt0301.github.io/hse-acos-course/
https://andrewt0301.github.io/hse-acos-course/
https://andrewt0301.github.io/hse-acos-course/
https://andrewt0301.github.io/hse-acos-course/
https://andrewt0301.github.io/hse-acos-course/
https://andrewt0301.github.io/hse-acos-course/
http://wiki.cs.hse.ru/ACOS_DSBA_2024/25
http://wiki.cs.hse.ru/ACOS_COMPDS_2024/2025
https://andrewt0301.github.io/hse-acos-course/
https://t.me/+wRC-TJXoI9M0ZmFi
https://t.me/+wRC-TJXoI9M0ZmFi
https://t.me/+wRC-TJXoI9M0ZmFi
https://t.me/+gTIDlXK1e3MyZjcy

Andrei Tatarnikov

Assistants

3

DSBA Course Team
Instructors

Sergey Khil Roman Stolyarov

Nikita Kalinin Adamey Laipanov Pavel Nedbay

David Badalyan

Andrei Tatarnikov

Assistants

4

COMPDS/EAD/CSS Course Team
Instructors

Alexandra Borisova Boris Galitsky Alexander Eremin

Vadim Vasilyev Andrei Polischuk Pavel Malov

Syllabus (see the web site for details)

Module 3: Computer Architecture
Computer architecture
Assembly language programming (RISC-V)
Home works, quizzes, and test

Module 4: Operating Systems
Operating System Architecture (Linux)
System programming in C
Home works, quizzes, and test

Final Exam

5

Course Outline

Increase your computer literacy

Have an idea how computers under the hood

Better understand performance

Be familiar with system programming

Be familiar with system tools
6

Course Motivation

7

Example: Matrix Multiplication (part 1)
import random
from time import time

n = 1024

A = [[random.random()
 for row in range(n)]
 for col in range(n)]
B = [[random.random()
 for row in range(n)]
 for col in range(n)]
C = [[0
 for row in range(n)]
 for col in range(n)]

start = time()
for i in range(n):
 for j in range(n):
 for k in range(n):
 C[i][j] += A[i][k] * B[k][j]
end = time()

print('%0.6f' % (end - start))

8

Example: Matrix Multiplication (part 2)
public class Matrix {
 static int n = 1024;
 static double[][] A = new double[n][n];
 static double[][] B = new double[n][n];
 static double[][] C = new double[n][n];

 public static void main(String[] args) {
 java.util.Random r = new java.util.Random();
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 A[i][j] = r.nextDouble();
 B[i][j] = r.nextDouble();
 C[i][j] = 0;
 }
 }
 long start = System.nanoTime();
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 for (int k = 0; k < n; k++) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
 }
 long stop = System.nanoTime();
 System.out.println((stop - start) * 1e-9);
 }
}

9

Example: Matrix Multiplication (part 3)
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>

#define n 1024
double A[n][n];
double B[n][n];
double C[n][n];

float tdiff(struct timeval *start, struct timeval *end) {
 return (end->tv_sec - start->tv_sec) +
 1e-6*(end->tv_usec - start->tv_usec);
}
int main(int argc, const char *argv[]) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 A[i][j] = (double)rand() / (double)RAND_MAX;
 B[i][j] = (double)rand() / (double)RAND_MAX;
 C[i][j] = 0;
 }
 }
 struct timeval start, end;
 gettimeofday(&start, NULL);
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 for (int k = 0; k < n; k++) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
 }
 gettimeofday(&end, NULL);
 printf("%0.6f\n", tdiff(&start, &end));
 return 0;
}

C Language: Optimizations

10

Example: Matrix Multiplication (part 4)

Loop order: i, j, k

for (int i= 0; i < n; i++) {
 for (int j= 0; j < n; j++) {
 for (int k= 0; k < n; k++) {
 C[i][j]+= A[i][k]*B[k][j];
 }
 }
}

Loop order: i, k, j

for (int i= 0; i < n; i++) {
 for (int k= 0; k < n; k++) {
 for (int j= 0; j < n; j++) {
 C[i][j]+= A[i][k]*B[k][j];
 }
 }
}

Loop order: j, k, i

for (int j= 0; j < n; j++) {
 for (int k= 0; k < n; k++) {
 for (int i= 0; i < n; i++) {
 C[i][j]+= A[i][k]*B[k][j];
 }
 }
}

Running time:
13.714264 sec.
Performance:
~ 153 MFLOPS

Running time:
2.739385 sec.
Performance:
~ 795 MFLOPS

Running time:
19.074106 sec.
Performance:
~ 113 MFLOPS

Feature Specifiction
Model MacBook Pro 9,1

Processor Name Quad-Core Intel Core i7

Processor Speed 2,3 GHz

Number of Processors 1

Total Number of Cores 4

Floating-Point Operations per Cycle 4

L2 Cache (per Core) 256 KB

L3 Cache: 6 MB

Hyper-Threading Technology Enabled

Memory 8 GB

11

Example: Matrix Multiplication (part 5)

12

What affects performance?

Hardware/Software Component How It Affects Performance

Algorithm Determines both the number of
source-level statements and the
number of I/O operations executed

Programming Language, Compiler, and
Architecture

Determines the number of
computer instructions for each
source-level statement

Processor and Memory System Determines how fast instructions
can be executed

I/O System (Hardware and Operating
System)

Determines how fast I/O operations
may be executed

1834–71: Analytical Engine
designed by Charles Babbage

Mechanical gears, where each
gear represented a discrete
value (0-9)

Programs provided as
punched cards

Never finished due to
technological restrictions

13

History: 0th Generation – Mechanical

1945–55: first machines
were created (Atanasoff–
Berry, Z3, Colossus, ENIAC)

All programming in pure
machine language

Connecting boards and
wires, punched cards
(later)

Stored program concept

 14

History: 1st Generation - Vacuum Tubes

Input

Output

Memory

Arithmetical /
Logic Unit

Control Unit

1955–65: era of mainframes
(e.g. IBM 7094) used in large
companies
Programming in assembly

language and FORTRAN
Batch systems (IO was

separated from calculations)
Punched cards and magnetic

tape
Loaders (OS ancestors)

15

History: 2nd Generation - Transistors

1965–1980: computer lines
using the same instruction set
architecture (e.g. IBM 360)
First operating systems (e.g.

OS/360, MULTICS)
Multiprogramming and

timesharing
Computer as utility
Programming languages and

compilers (LISP, BASIC, C)
16

History: 3rd Generation – Integrated Circuits

Job 3

Job 2

Job 1

Operating
System

Memory
Partitions

1980–Present: personal computers,
laptops, servers (Apple, IBM, etc.)

Architectures: x86-64, Itanium, ARM,
MIPS, PowerPC, SPARC, RISC-V, etc.

Operating systems: UNIX (System V
and BSD), MINIX, Linux, MacOS, DOS,
Windows (NT)

ISA (CISC, RISC, VLIW), caches,
pipelines, SIMD, vectors,
hyperthreading, multicore 17

History: 4th Generation – VLSI and PC

1990–Present: mobile devices,
embedded systems, IoT devices

Custom processors and FPGAs

Mobile operating systems:
Symbian, iOS, Android,
Windows Mobile

Real-time operating systems

18

History: 5th Generation – Mobile devices

19

Technology Trends
Electronics technology

continues to evolve
 Increased capacity and

performance
Reduced cost

Memory capacity

Gordon Moore (1929-...) cofounded Intel in 1968

with Robert Noyce

Moore’s Law: number of transistors on a computer

chip doubles every year (observed in 1965)

Limited by power consumption

Slowed down since 2010
20

Moore’s Law

21

Single Core Performance

Constrained by power, instruction-level parallelism, memory latency

Move to multicore

22

Power Trends

23

Memory Performance Gap

Single core performance improvement has ended
More powerful microprocessor might not help

Memory-efficient programming
Temporal locality
Spatial locality

Parallelism to improve performance
Data-level parallelism
Thread-level parallelism
Request-level parallelism

Performance tuning require changes in the application
24

Current Challenges

To create software that efficiently
deals with big data, we need to
understand how hardware is
organized and managed by
operating system

Computer architecture

Assembly language

Compiler basics

Operating systems
25

Concluding Remarks

Focus
of this
course

Any Questions?

26

