
Computer Architecture and Operating Systems 
Lecture 1: Introduction 

Andrei Tatarnikov 
andrewt0301@gmail.com  

@andrewt0301 



Website 
https://andrewt0301.github.io/hse-acos-course/ 

Wiki 
http://wiki.cs.hse.ru/ACOS_DSBA_2023/24 
http://wiki.cs.hse.ru/ACOS_COMPDS_2023/2024 

Telegram 
https://t.me/+LbeE_5yrTQEzYjQy (DSBA) 
https://t.me/+OAQIO_59VjZhY2U6 (COMPDS/EAD) 

2 

Course Resources 

https://andrewt0301.github.io/hse-acos-course/
https://andrewt0301.github.io/hse-acos-course/
https://andrewt0301.github.io/hse-acos-course/
https://andrewt0301.github.io/hse-acos-course/
https://andrewt0301.github.io/hse-acos-course/
https://andrewt0301.github.io/hse-acos-course/
http://wiki.cs.hse.ru/ACOS_DSBA_2023/24
http://wiki.cs.hse.ru/ACOS_COMPDS_2023/2024
https://andrewt0301.github.io/hse-acos-course/
https://t.me/+LbeE_5yrTQEzYjQy
https://t.me/+OAQIO_59VjZhY2U6


Andrei Tatarnikov 

Assistants 

 

3 

DSBA Course Team 
Instructors 

Alexey Kanakhin Roman Stolyarov 

Oleg Malchenko Fedor Pakhurov Vladislav Kirichok Pavel Nedbay Artem Borisov 

Artem Viktorov Alexander Makhov 



Andrei Tatarnikov 

Assistants 

 

4 

COMPDS/EAD/CSS Course Team 
Instructors 

Alexandra Borisova 

Pavel Nedbay 

Boris Galitsky Nikita Golovanov 

Pavel Ivanov German Perov Igor Demushkin Fedor Pakhurov Namig Damirov Arseny Bolotnikov 



Syllabus (see the web site for details) 

Module 3: Computer Architecture 
Computer architecture 
Assembly language programming (RISC-V) 
Home works, quizzes, and test 

Module 4: Operating Systems 
Operating System Architecture (Linux) 
System programming in C 
Home works, quizzes, and test 

Final Exam 
 

5 

Course Outline 



Increase your computer literacy 

Have an idea how computers under the hood 

Better understand performance 

Be familiar with system programming 

Be familiar with system tools 
6 

Course Motivation 



7 

Example: Matrix Multiplication (part 1) 
import random 
from time import time 
 
n = 1024 
 
A = [[random.random() 
      for row in range(n)] 
      for col in range(n)] 
B = [[random.random() 
      for row in range(n)] 
      for col in range(n)] 
C = [[0 
      for row in range(n)] 
      for col in range(n)] 
 
start = time() 
for i in range(n): 
    for j in range(n): 
        for k in range(n): 
            C[i][j] += A[i][k] * B[k][j] 
end = time() 
 
print('%0.6f' % (end - start)) 



8 

Example: Matrix Multiplication (part 2) 
public class Matrix { 
    static int n = 1024; 
    static double[][] A = new double[n][n]; 
    static double[][] B = new double[n][n]; 
    static double[][] C = new double[n][n]; 
 
    public static void main(String[] args) { 
        java.util.Random r = new java.util.Random(); 
        for (int i = 0; i < n; i++) { 
            for (int j = 0; j < n; j++) { 
                A[i][j] = r.nextDouble(); 
                B[i][j] = r.nextDouble(); 
                C[i][j] = 0; 
            } 
        } 
        long start = System.nanoTime(); 
        for (int i = 0; i < n; i++) { 
            for (int j = 0; j < n; j++) { 
                for (int k = 0; k < n; k++) { 
                    C[i][j] += A[i][k] * B[k][j]; 
                } 
            } 
        } 
        long stop = System.nanoTime(); 
        System.out.println((stop - start) * 1e-9); 
    } 
} 



9 

Example: Matrix Multiplication (part 3) 
#include <stdlib.h> 
#include <stdio.h> 
#include <sys/time.h> 
 
#define n 1024 
double A[n][n]; 
double B[n][n]; 
double C[n][n]; 
 
float tdiff(struct timeval *start, struct timeval *end) { 
    return (end->tv_sec - start->tv_sec) + 
           1e-6*(end->tv_usec - start->tv_usec); 
} 
int main(int argc, const char *argv[]) { 
    for (int i = 0; i < n; i++) { 
        for (int j = 0; j < n; j++) { 
            A[i][j] = (double)rand() / (double)RAND_MAX; 
            B[i][j] = (double)rand() / (double)RAND_MAX; 
            C[i][j] = 0; 
        } 
    } 
    struct timeval start, end; 
    gettimeofday(&start, NULL); 
    for (int i = 0; i < n; i++) { 
        for (int j = 0; j < n; j++) { 
            for (int k = 0; k < n; k++) { 
                C[i][j] += A[i][k] * B[k][j]; 
            } 
        } 
    } 
    gettimeofday(&end, NULL); 
    printf("%0.6f\n", tdiff(&start, &end)); 
    return 0; 
} 



C Language: Optimizations 
 

 

10 

Example: Matrix Multiplication (part 4) 

Loop order: i, j, k 
 
for (int i= 0; i < n; i++) { 
  for (int j= 0; j < n; j++) { 
    for (int k= 0; k < n; k++) { 
      C[i][j]+= A[i][k]*B[k][j]; 
    } 
  } 
} 

Loop order: i, k, j 
 
for (int i= 0; i < n; i++) { 
  for (int k= 0; k < n; k++) { 
    for (int j= 0; j < n; j++) { 
      C[i][j]+= A[i][k]*B[k][j]; 
    } 
  } 
} 

Loop order: j, k, i 
 
for (int j= 0; j < n; j++) { 
  for (int k= 0; k < n; k++) { 
    for (int i= 0; i < n; i++) { 
      C[i][j]+= A[i][k]*B[k][j]; 
    } 
  } 
} 

Running time: 
13.714264 sec. 
Performance: 
~ 153 MFLOPS 

Running time: 
2.739385 sec. 
Performance: 
~ 795 MFLOPS 

Running time: 
19.074106 sec. 
Performance: 
~ 113 MFLOPS 



Feature Specifiction 
Model MacBook Pro 9,1 

Processor Name Quad-Core Intel Core i7 

Processor Speed 2,3 GHz 

Number of Processors 1 

Total Number of Cores 4 

Floating-Point Operations per Cycle 4 

L2 Cache (per Core) 256 KB 

L3 Cache: 6 MB 

Hyper-Threading Technology Enabled 

Memory 8 GB 

11 

Example: Matrix Multiplication (part 5) 



12 

What affects performance? 

Hardware/Software Component How It Affects Performance 

Algorithm Determines both the number of 
source-level statements and the 
number of I/O operations executed 

Programming Language, Compiler, and 
Architecture 

Determines the number of 
computer instructions for each 
source-level statement 

Processor and Memory System Determines how fast instructions 
can be executed 

I/O System (Hardware and Operating 
System) 

Determines how fast I/O operations 
may be executed 



1834–71: Analytical Engine 
designed by Charles Babbage 

Mechanical gears, where each 
gear represented a discrete 
value (0-9) 

Programs provided as 
punched cards 

Never finished due to 
technological restrictions 

13 

History: 0th Generation – Mechanical 



1945–55: first machines 
were created (Atanasoff–
Berry, Z3, Colossus, ENIAC) 

All programming in pure 
machine language 

Connecting boards and 
wires, punched cards 
(later) 

Stored program concept 

 14 

History: 1st Generation - Vacuum Tubes 

Input 

Output 

Memory 

Arithmetical / 
Logic Unit 

Control Unit 



1955–65: era of mainframes 
(e.g. IBM 7094) used in large 
companies 
Programming in assembly 

language and FORTRAN 
Batch systems (IO was 

separated from calculations) 
Punched cards and magnetic 

tape 
Loaders (OS ancestors) 

15 

History: 2nd Generation - Transistors 



1965–1980: computer lines 
using the same instruction set 
architecture (e.g. IBM 360) 
First operating systems (e.g. 

OS/360, MULTICS) 
Multiprogramming and 

timesharing 
Computer as utility 
Programming languages and 

compilers (LISP, BASIC, C) 
16 

History: 3rd Generation – Integrated Circuits 

Job 3 

Job 2 

Job 1 

Operating 
System 

Memory 
Partitions 



1980–Present: personal computers, 
laptops, servers (Apple, IBM, etc.) 

Architectures: x86-64, Itanium, ARM, 
MIPS, PowerPC, SPARC, RISC-V, etc. 

Operating systems: UNIX (System V 
and BSD), MINIX, Linux, MacOS, DOS, 
Windows (NT) 

ISA (CISC, RISC, VLIW), caches, 
pipelines, SIMD, vectors, 
hyperthreading, multicore 17 

History: 4th Generation – VLSI and PC  



1990–Present: mobile devices, 
embedded systems, IoT devices 

Custom processors and FPGAs 

Mobile operating systems: 
Symbian, iOS, Android, 
Windows Mobile 

Real-time operating systems 

 
18 

History: 5th Generation – Mobile devices  



19 

Technology Trends 
Electronics technology 

continues to evolve 
 Increased capacity and 

performance 
Reduced cost 

Memory capacity 



Gordon Moore (1929-...) cofounded Intel in 1968 

with Robert Noyce 

Moore’s Law: number of transistors on a computer 

chip doubles every year (observed in 1965) 

Limited by power consumption  

Slowed down since 2010 
20 

Moore’s Law 



21 

Single Core Performance 

Constrained by power, instruction-level parallelism, memory latency 

Move to multicore 



22 

Power Trends 



23 

Memory Performance Gap 



Single core performance improvement has ended 
More powerful microprocessor might not help 

Memory-efficient programming 
Temporal locality 
Spatial locality 

Parallelism to improve performance 
Data-level parallelism 
Thread-level parallelism 
Request-level parallelism 

Performance tuning require changes in the application 
24 

Current Challenges 



To create software that efficiently 
deals with big data, we need to 
understand how hardware is 
organized and managed by 
operating system  

Computer architecture 

Assembly language 

Compiler basics 

Operating systems 
25 

Concluding Remarks 

Focus 
of this 
course 



Any Questions? 

26 


