
1. Operating system architecture.
o What are main tasks solved by an operating systems (services)?
o What is operating system kernel?
o Explain differences between monolithic and microkernel model of OS kernel. What models are

used in Linux/MacOS/Windows?
o Explain the idea of kernel and user modes of a processor.
o What is a system call and how is it implemented?

2. C programming language. GNU C Library (glibc).
o C language: brief history, what tasks it solves, advantages over assembly language.
o What data types are supported in C? What is a pointer? How does sizeof work?
o How to assign and how to dereference a pointer? How does address arithmetic work?
o What is glibc (GNU C Library) and what tasks does it solve?
o How are strings are represented in C? What functions to manipulate with strings do you know?
o Explain the main idea of pattern-matching and regular expressions.

3. Executable and Linkable Format (ELF).
o What is ELF? What kings of ELF object files do you know? What is their purpose?
o What data do ELF object files contain?
o Explain the idea of symbols and symbol table. What kinds of symbols do you know?
o What happens when several object files are linked together (explain the idea of symbol

resolution and relocation)?
o What does it mean strong and weak symbol? Explain symbol resolution rules.
o Explain the idea of position-independent code (PIC).

4. Compiling/linking/loading. Static and dynamic libraries.
o List the compiler stages (steps to turn a C source file to an executable file).
o What is done at the linking stage? What is the meaning of static and global keywords?
o Explain the idea of static and shared libraries.
o Explain the idea of run-time loading of shared libraries. What are the advantages of shared

libraries?
o Explain the idea of library interpositioning (compile time, link lime, load/run time).
o What tasks are solved with the help of Make files? What are target, source, and recipe in a

Make file?

5. Memory management.
o Memory layout of a program: What memory segments do you know? What purposes do they

serve?
o What ways to allocate memory do you know?
o How dynamic memory allocation via malloc/free is implemented (using what data structures)?
o Give definitions of payload, fragmentation, and placement strategies.
o What is the purpose of the sbrk system call?

6. Filesystems. Linux folder structure.
o What Linux file types do you know?
o Explain the purpose of the following Linux

folders: /home, /bin, /sbin, /usr, /proc, /dev, /media.
o What is Virtual File Systems (VFS) and what functions does it provide?
o What are the parts of a Linux disk?
o What is inode? What data does it contain?
o What is a link? How to create it (what utility tool to use)? What is the difference between hard

and symbol links?

7. System calls / system utilities / Shell (Bash).
o Explain connection between system calls, system utilities and Bash.
o What is Bash and what tasks does solves?
o How to get a manual on Linux system utilities and system calls?
o How (using what special symbols) to access command-line arguments in Bash?
o What is the role of exit code in a program (e.g. 0 vs. -1)? Who exit code can be checked in

Bash scripts?
o Name Linux utilities that solve these tasks:

 print current directory;
 change current directory;
 print the list of files/folders in the current directory;
 create new folder;
 copy file/folder;
 remove file/folder;
 move/rename file/folder;
 print full path to a utility file (e.g. full path to gcc).

o What Bash commands are used to read user input to a variable and to print variable values?

8. File input/output. Pipes and redirection.
o What system calls are used to read/write data from/to files?
o What glibs (C Standard Library) function to work with files do you know? Their advantages

over system calls?
o What is a file descriptor? What is descriptor table? What is open file table?
o List three standard streams of a Linux process and their descriptors.
o How to redirect process I/O from a terminal to a file?
o How to connect I/O of two processes?
o What is a pipe? What system calls are used to manage pipes?

9. Processes.
o What is a process? What parts does it contains (its layout in memory)?
o List the states of the process and describe how it changes states.
o What is Process Control Block (PCB)? What information does it contain?
o Explain how CPU switches between processes (context switch).
o Explain the main idea of short-term, long-term, and medium-term schedulers. What is process

swapping?
o Describe the idea of process creation with system calls fork and exec. What is the role of

system call wait?
o How to see the list of running processes in Linux (what system utilities do you know)?

10. Threads and synchronization.
o Give a definition of a thread. Explain the difference between a process and a thread.
o Explain the main idea of consumer-producer problem.
o Explain the idea of critical section and mutual exclusion.
o How thread synchronization is supported in hardware?
o List system calls that are used to manage threads in Linux (pthreads).
o Explain the main idea of mutexes and conditional variables (pthreads).
o What is a deadlock?

11. Permissions.
o What are main attributes of a Linux user and group?
o What access rights do you know? What permission groups do you know? How to view file

permissions (what utility tool to use)?
o How to change file permissions (what utility tool to use)? E.g. add write permission to group,

remove read permission from other.
o Explain the setuid/setguid permissions.
o Explain the sticky bit permission.

12. Inter-process communications: signals.
o Give a definition of a signal. What signals to you know (name and purpose)?
o How to send a signal to a process (system call and utility tool)?
o How to set up a custom handler for a signal? It is possible to do this for all signals?
o Explain the idea of foreground and background processes. How to run a background process?
o How to switch a process from foreground to background and vice versa?

13. Inter-process communications: message queues, memory mapping, shared memory.
o Explain the main idea of two models of inter-process communication: shared memory and

messages.
o Describe main features of POSIX message queues. What system calls are used to manage

POSIX message queues?
o How subscribe to get a notification (a signal) when a message is available in the queue?
o Explain the idea of mapping file into memory? What system call is used for this?
o Describe main idea of POSIX shared memory. That system calls are used to manage it?

14. Network. Sockets and TCP/IP.
o Explain the concept of a client-server application.
o Explain the idea of a network protocol. What is a network packet and what information does it

contain?
o What protocols does the TCP/IP family include?
o What is MAC address? What is IP address? How domain name (e.g. www.hse.ru) is converted

to an IP address?
o Explain the difference between TCP and UDP. What advantages and disadvantages do they

have?
o What is socket? What system calls are done by the client and the server to establish a

communication?
o What is a port? Give examples of network protocols you know and ports they use.

