1. Computer architecture.

O O O 0 O

What main parts do modern computers include?

Explain the stored program concept and how a computer executes a program.
What is computer architecture? What is computer micro-architecture?

What instruction set architectures do you know?

What are performance challenges of modern computers?

2. Integer data formats and operations.

(o]

O O O O O

What is a byte and what is a machine word? What is byte ordering (which ones do you know)?
Describe unsigned integer format and 2's complement signed integer format.

How unsigned and signed values are converted to decimal numbers?

How unsigned values are converted to signed and vice versa?

What is the difference between integer sign- and zero-extension?

What is the difference between arithmetical and logical shift?

3. Floating-point format.

©]
©]

@)

Why floating-point format is needed? Name the standard that covers it.

Explain the floating-point format (sign, exponent, fraction). Describe single and double
precision.

What is implicit 1. in fraction? Why exponents are biased (and what is bias)?

Explain how the following value types are encoded: zero, normalized number, denormalized
number, infinity, NaN.

What are floating-point overflow and underflow?

How does addition of two floating-point numbers works (the main steps)?

How floating-point format is supported in RISC-V (registers, main instructions)?

4. ISA and assembler language.

O
©]
©]

What is instruction set architecture (ISA)?

Give definitions and examples of the following ISA types: RISC, CISC, and VLIW.

What are machine code, assembly language, and assembler? What tool converts machine
code to assembly language?

Describe of the structure of an assembly program (when in text) and its memory layout (when
in machine code).

Describe main assembly directives (.text, .data, .align, .space, etc.). What else do you
know?

5. RISC-V.

o

o O O O

Brief history and advantages of the RISC-V ISA. Design principles of RISC-V.

List main RISC-V registers and main instruction types with examples.

What is program counter (PC)? What RISC-V instruction can be used to read its value?
Briefly describe 6 types of RISC-V instruction encodings (R-type, I-type, etc.).

Explain immediate addressing, register addressing, base addressing, and PC-relative
addressing.



6. RISC-V assembly programming.

(¢]

O
O
O

o O

Give a definition of a register. What is the difference between registers and memory?

How you you swap values of two registers without using a temporary registers?

Give an example of a logic and arithmetical shift instruction. Explain the differences.

What load and store instructions do you know? Explain the difference between

the 1h and 1hu instructions.

What control-transfer instructions do you know?

Explain the idea of pseudoinstructions. Give examples of RISC-V pseudoinstructions.
Explain the idea of macros. When would you use macros? How to reuse macros defined in
other .s files?

7. Functions and stack.

O
O

What is a function? What are caller and callee?

How functions are implemented in assembly language? Describe what exception are
performed by a function call.

Explain the idea of return address and jump-and-link instructions?

What are stack, stack pointer, stack (function) frame, and frame pointer? What is stored in the
stack?

Explain the idea of caller- and callee-saved registers (give examples of such registers).

8. Interrupts and exceptions.

(o]

O O O O

What is an interrupt and what is an exception? What RISC-V exceptions do you know?

What is the role of Control and Status Registers (CSRs) in handling exceptions?

What system instructions do you know?

What happens when an exception occurs (how the CPU handles the event)?

What is an exception handler? What actions does it perform? How does the CPU know how to
call a handler?

What is a system call and how does it work?

9. Memory-mapped I/O (MMIO).

O

o O O O

How 1/O devices are connected to CPU and managed (control, data, and status signals)?
Explain the idea of Memory-Mapped /O (MMIO).

Explain the idea of Direct Memory Access (DMA).

Explain difference between Interrupt-Driven 1/0O and Polling?

What is a device driver?

10. Pipelining.

o]
O

List the 5 stages and give brief descriptions for them.

What pipeline hazards are? List the types of hazards and the ways to prevent them (with brief
definitions).

Give an example of a hazard situation and how it can be handled.

What is branch prediction is needed for? How does it work?

11. Caches.

o

O O O 0 O

Describe how caching mechanism works (block, index, tag, valid bit, dirty bit).

Give the definition of associativity (direct-mapped, set associative, fully associative).
What is the difference between write-through and write-back?

What is replacement policy (what type of policy do you know)?

How many cache levels are typical for modern processors?

What problem can caches create for multicore processors?



12. Virtual Memory.

(o]

O O O 0 O

What is virtual memory (vs. physical memory)?

How does address translation work?

What is a page table and what information does it contain?

What is TLB and why is it needed? That is a TLB miss and how is it handled?
What is a page fault?

How does memory protection work?

13. Thread-level parallelism.

O
©]
©]

Why do we need thread-level parallelism? What are the challenges of parallel programming?
What is Amdahl’s Law?

Briefly describe how multi-threading works with: hardware multithreading (hyperthreading),
multicore, multiprocessors.

What are context and context switch?

What is memory coherency problem?

14. Multiple issue processor. Data-level parallelism. Domain-specific architectures.

O

O
O
O

Explain the ide of multiple issues and superscalar microprocessors.

How do static multiple issue and dynamic multiple issue work? What is speculation?

What are SISD, SIMD, MISD, and MIMD?

Summarize the idea of SIMD. How does it help improve performance? Give examples of the
SIMD approach in modern computers.

Why do we need domain-specific processors? Main principles of modern DSAs. Give an
example of a DSA processor.

15. Optimizations.

O

(@]

Goal of optimizations? Algorithmic optimizations vs. compiler optimizations (advantages and
limitations)?

How to assess performance?

What optimizations do you know?

How does the loop unrolling optimisation work (how it improves performance)?



