
1. Computer architecture.
o What main parts do modern computers include?
o Explain the stored program concept and how a computer executes a program.
o What is computer architecture? What is computer micro-architecture?
o What instruction set architectures do you know?
o What are performance challenges of modern computers?

2. Integer data formats and operations.
o What is a byte and what is a machine word? What is byte ordering (which ones do you know)?
o Describe unsigned integer format and 2's complement signed integer format.
o How unsigned and signed values are converted to decimal numbers?
o How unsigned values are converted to signed and vice versa?
o What is the difference between integer sign- and zero-extension?
o What is the difference between arithmetical and logical shift?

3. Floating-point format.
o Why floating-point format is needed? Name the standard that covers it.
o Explain the floating-point format (sign, exponent, fraction). Describe single and double

precision.
o What is implicit 1. in fraction? Why exponents are biased (and what is bias)?
o Explain how the following value types are encoded: zero, normalized number, denormalized

number, infinity, NaN.
o What are floating-point overflow and underflow?
o How does addition of two floating-point numbers works (the main steps)?
o How floating-point format is supported in RISC-V (registers, main instructions)?

4. ISA and assembler language.
o What is instruction set architecture (ISA)?
o Give definitions and examples of the following ISA types: RISC, CISC, and VLIW.
o What are machine code, assembly language, and assembler? What tool converts machine

code to assembly language?
o Describe of the structure of an assembly program (when in text) and its memory layout (when

in machine code).
o Describe main assembly directives (.text, .data, .align, .space, etc.). What else do you

know?

5. RISC-V.
o Brief history and advantages of the RISC-V ISA. Design principles of RISC-V.
o List main RISC-V registers and main instruction types with examples.
o What is program counter (PC)? What RISC-V instruction can be used to read its value?
o Briefly describe 6 types of RISC-V instruction encodings (R-type, I-type, etc.).
o Explain immediate addressing, register addressing, base addressing, and PC-relative

addressing.

6. RISC-V assembly programming.
o Give a definition of a register. What is the difference between registers and memory?
o How you you swap values of two registers without using a temporary registers?
o Give an example of a logic and arithmetical shift instruction. Explain the differences.
o What load and store instructions do you know? Explain the difference between

the lh and lhu instructions.
o What control-transfer instructions do you know?
o Explain the idea of pseudoinstructions. Give examples of RISC-V pseudoinstructions.
o Explain the idea of macros. When would you use macros? How to reuse macros defined in

other .s files?

7. Functions and stack.
o What is a function? What are caller and callee?
o How functions are implemented in assembly language? Describe what exception are

performed by a function call.
o Explain the idea of return address and jump-and-link instructions?
o What are stack, stack pointer, stack (function) frame, and frame pointer? What is stored in the

stack?
o Explain the idea of caller- and callee-saved registers (give examples of such registers).

8. Interrupts and exceptions.
o What is an interrupt and what is an exception? What RISC-V exceptions do you know?
o What is the role of Control and Status Registers (CSRs) in handling exceptions?
o What system instructions do you know?
o What happens when an exception occurs (how the CPU handles the event)?
o What is an exception handler? What actions does it perform? How does the CPU know how to

call a handler?
o What is a system call and how does it work?

9. Memory-mapped I/O (MMIO).
o How I/O devices are connected to CPU and managed (control, data, and status signals)?
o Explain the idea of Memory-Mapped I/O (MMIO).
o Explain the idea of Direct Memory Access (DMA).
o Explain difference between Interrupt-Driven I/O and Polling?
o What is a device driver?

10. Pipelining.
o List the 5 stages and give brief descriptions for them.
o What pipeline hazards are? List the types of hazards and the ways to prevent them (with brief

definitions).
o Give an example of a hazard situation and how it can be handled.
o What is branch prediction is needed for? How does it work?

11. Caches.
o Describe how caching mechanism works (block, index, tag, valid bit, dirty bit).
o Give the definition of associativity (direct-mapped, set associative, fully associative).
o What is the difference between write-through and write-back?
o What is replacement policy (what type of policy do you know)?
o How many cache levels are typical for modern processors?
o What problem can caches create for multicore processors?

12. Virtual Memory.
o What is virtual memory (vs. physical memory)?
o How does address translation work?
o What is a page table and what information does it contain?
o What is TLB and why is it needed? That is a TLB miss and how is it handled?
o What is a page fault?
o How does memory protection work?

13. Thread-level parallelism.
o Why do we need thread-level parallelism? What are the challenges of parallel programming?
o What is Amdahl’s Law?
o Briefly describe how multi-threading works with: hardware multithreading (hyperthreading),

multicore, multiprocessors.
o What are context and context switch?
o What is memory coherency problem?

14. Multiple issue processor. Data-level parallelism. Domain-specific architectures.
o Explain the ide of multiple issues and superscalar microprocessors.
o How do static multiple issue and dynamic multiple issue work? What is speculation?
o What are SISD, SIMD, MISD, and MIMD?
o Summarize the idea of SIMD. How does it help improve performance? Give examples of the

SIMD approach in modern computers.
o Why do we need domain-specific processors? Main principles of modern DSAs. Give an

example of a DSA processor.

15. Optimizations.
o Goal of optimizations? Algorithmic optimizations vs. compiler optimizations (advantages and

limitations)?
o How to assess performance?
o What optimizations do you know?
o How does the loop unrolling optimisation work (how it improves performance)?

